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KEYWORDS Abstract
Background: Recent studies have shown potential in introducing machine learning (ML) algorithms to

« coronary artery predict outcomes post-percutaneous coronary intervention (PCI).

disease
e prior PCI
e risk stratification

Aims: We aimed to critically appraise current ML models’ effectiveness as clinical tools to predict outcomes
post-PCL.

Methods: Searches of four databases were conducted for articles published from the database inception
date to 29 May 2021. Studies using ML to predict outcomes post-PCI were included. For individual post-
PCI outcomes, measures of diagnostic accuracy were extracted. An adapted checklist comprising existing
frameworks for new risk markers, diagnostic accuracy, prognostic tools and ML was used to critically
appraise the included studies along the stages of the translational pathway: development, validation, and
impact. Quality of training data and methods of dealing with missing data were evaluated.

Results: Twelve cohorts from 11 studies were included with a total of 4,943,425 patients. ML models
performed with high diagnostic accuracy. However, there are concerns over the development of the ML
models. Methods of dealing with missing data were problematic. Four studies did not discuss how missing
data were handled. One study removed patients if any of the predictor variable data points were missing.
Moreover, at the validation stage, only three studies externally validated the models presented. There could
be concerns over the applicability of these models. None of the studies discussed the cost-effectiveness of
implementing the models.

Conclusions: ML models show promise as a useful clinical adjunct to traditional risk stratification scores
in predicting outcomes post-PCI. However, significant challenges need to be addressed before ML can be

integrated into clinical practice.
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Abbreviations
AUC area under the curve
LASSO least absolute shrinkage and selection operator

ML machine learning

NPV negative predictive value

PCI percutaneous coronary intervention
PPV positive predictive value

Introduction

Ischaemic heart disease is the greatest cause of mortality and
loss of disability-adjusted life years worldwide, accounting for
approximately 7 million deaths and 129 million disability-adjusted
life years annually'. Percutaneous coronary intervention (PCI)
is indicated in patients with acute coronary syndrome and has
been shown to improve quality of life in those on the maximal
tolerated medical therapy?. Such intervention may be associated
with complications, such as postprocedural acute kidney injury,
bleeding, heart failure and others.

Traditional statistical modelling methods have been adopted to
predict outcomes post-PCI, involving preselecting and transforming
candidate variables based on prior knowledge, applying hierarchical
logistic regression to model relationships between variables and
outcomes, and reducing the number of variables to create the
final model®. However, this approach is limited, as it assumes
a linear relationship between the variables and logarithmic odds
of outcomes, and is weak to collinearity between the variables*.
Conversely, machine learning (ML) algorithms are free of these
linear assumptions and have the additional benefit of being able to
control collinearity by regularisation of hyperparameters>.

ML is a branch of artificial intelligence which uses large
datasets to produce algorithms with minimal human intervention,
allowing for automated learning. ML learns from examples in
training datasets by optimising algorithms according to a loss
function. Different ML models exist, including adaptive boosting,
k-nearest neighbours, least absolute shrinkage and selection
operator (LASSO), random forest, artificial neural network, and
support vector machine, amongst others.

In an age of precision medicine, ML has demonstrated its
capabilities in sifting through vast amounts of clinical data and
reliably predicting outcomes®, guiding clinicians in efficiently
stratifying patients and making individualised treatment
decisions’. Several studies have also shown significant potential
in introducing ML algorithms to predict post-PCI outcomes®®.
Nonetheless, other studies have shown no performance benefit
of ML over traditional statistical methods for clinical prediction
models'’. Hence, we conducted a systematic review to evaluate
the effectiveness and validity of current ML models as a clinical
tool to predict outcomes following PCI.

Methods

This systematic review was registered on PROSPERO
(International prospective register of systematic reviews;
CRD258014) and was reported according to the Preferred

Reporting Items for Systematic reviews and Meta-Analyses
guidelines!'. Searches of four databases (PubMed, Embase,
Cochrane, and Scopus) were conducted for articles published
from the date of inception up to 29 May 2021. A literature search
was performed using terms synonymous with “machine learning”,
“prediction” and “PCI”. The full list of search terms can be found
in Supplementary Table 1.

Table 1 summarises the population, intervention, comparison,
outcomes, and inclusion and exclusion criteria used for study
selection. Briefly, we included all cohort studies, case-control
studies, and randomised controlled trials using ML to predict
outcomes post-PCI. Outcomes post-PCI included those relating
to mortality (all-cause mortality and in-hospital mortality),
the heart (myocardial infarction, heart failure, cardiovascular
death, arrhythmia, emergency coronary artery bypass graft, stent
thrombosis, and coronary artery restenosis), haemodynamics
(bleeding), the kidneys (acute kidney injury, contrast-induced
nephropathy, and dialysis) and others (prolonged length of
stay >7 days and stroke). The range in timeframes for outcome
measurement spanned from 72 hours to 1 year.

Three reviewers independently performed the literature search,
title and abstract review, full text sieve and data extraction, and
all disagreements were resolved by mutual consensus. Baseline
demographic information, comorbidities, follow-up duration,
medication information and procedural information were collected.

For individual post-PCI outcomes, the number of patients with
confirmed disease (NP), sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), area under the curve
(AUC), and accuracy were collected for each ML model, when
reported. The checklist developed by Banerjee et al'? was used in
this study to critically appraise the included studies, mainly along
the stages of the translational pathway: development, validation
and impact. Quality of training data and methods of dealing with
missing data were evaluated.

Data related to blinding and withdrawals were extracted to assess
the risk of bias. Quality control was performed by two independent
reviewers using the Newcastle-Ottawa Scale'® (Supplementary
Table 2) and the Prediction Risk of Bias ASsessment Tool
(PROBAST)™ (Supplementary Table 3). The Newcastle-Ottawa
Scale for cohort studies considers three different domains:
selection, comparability, and outcome. PROBAST considers four
different domains: participants, predictors, analysis, and outcomes.
Studies are graded as having a low, high, or an unclear risk of bias/
concern regarding applicability. The Preferred Reporting Items for
Systematic reviews and Meta-Analyses checklist! is included in
Supplementary Figure 1.

We included ML models that predicted in-hospital mortality,
myocardial infarction, and bleeding. Diagnostic accuracy data
for the included models were extracted. The ML models used
comprised adaptive boosting, k-nearest neighbours, LASSO,
random forest, artificial neural network, support vector machine,
multilayer perceptron neural network, Naive Bayes, extreme
gradient boosting, blended model with gradient descent boosting,
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Table 1. Population, intervention, comparison, outcomes and study (PICOS) inclusion criteria and exclusion criteria applied to database

search.
PICOS ‘ Inclusion criteria

Population Patients who have undergone PCI

‘ Exclusion criteria

Intervention ML model

Comparison

statistical modelling

Traditional risk stratification tools (i.e., CADILLAC risk
score, PAMI risk score, Zwolle risk score, GRACE
hospital discharge score, dynamic TIMI risk score,
RISK-PCI score, APEX AMI risk score, residual SYNTAX
score, DAPT Score, GUSTO score, EPICOR prognostic
model, and other scores that may be relevant) and

Outcome

days, and stroke

Bleeding, acute kidney injury, contrast-induced
nephropathy, dialysis, heart failure, myocardial
infarction, cardiovascular deaths, arrhythmias,
emergency CABG, stent thrombosis, coronary artery
restenosis, all-cause mortality, in-hospital mortality,
prolonged length of stay more than or equal to seven

Study design Articles in English

Case reports and series, systematic reviews, narrative

controlled trials

Cohort studies, case-control studies, randomised

reviews, qualitative reviews, letters to the editor,
non-human studies, abstract only (conference papers),
non-peer-reviewed articles

Year of publication: date of inception-29 May 2021

Databases: PubMed, Embase, Cochrane, Scopus

APEX AMI: Assessment of Pexelizumab in Acute Myocardial Infarction; CABG: coronary artery bypass graft; CADILLAC: Controlled Abciximab and
Device Investigation to Lower Late Angioplasty Complications; DAPT: dual antiplatelet therapy; EPICOR: long-tErm follow uP of antithrombotic
management patterns In acute CORonary syndrome patients; GRACE: Global Registry of Acute Coronary Events; GUSTO: Global Use of Strategies To
Open Occluded Coronary Arteries; ML: machine learning; PAMI: Primary Angioplasty in Myocardial Infarction; PCI: percutaneous coronary intervention;
PICOS: population, intervention, comparison, outcome, study; TIMI: Thrombolysis in Myocardial Infarction

boosted classification trees algorithm model, and existing
simplified risk score with LASSO regression.

Results

The Preferred Reporting Items for Systematic reviews and Meta-
Analyses flowchart is presented in Figure 1. A literature search of
the four databases (PubMed, Embase, Cochrane, Scopus) retrieved
2,546 results. There were 727 duplicates, which were removed.
Title and abstract screening excluded a further 1,635 articles as
they either did not use ML to predict outcomes post-PCI, did
not mention PCI, or had insufficient statistical reporting of post-
PCI outcomes. Full text screening excluded 173 articles. Eleven
studies were included for the systematic review.

The 11 studies comprised a combined cohort of 4,943,425
patients**!>3, Gao 2020 included 2 separate cohorts, comprising
1 retrospective and 1 prospective cohort'’. Thus, while the
flowchart in Figure 1 shows 11 included studies, 12 cohorts
were analysed in total. Across the studies, the reported post-PCI
outcomes included in-hospital mortality, myocardial infarction,
bleeding, and acute kidney injury. The characteristics of the
included studies are shown in Tahle 2. Additional data relating
to participant baseline characteristics, including demographics,
medications used, and information relating to procedure(s), are
presented in Supplementary Table 4, Supplementary Table 5, and
Supplementary Table 6, respectively.

The sensitivity, specificity, PPV, NPV, and accuracy for the ML
models used to predict in-hospital mortality, myocardial infarction,

bleeding, in-hospital mortality and acute kidney injury for each
included study are presented in Table 3. As seen, the sensitivity,
specificity, PPV, NPV and accuracy are consistently high across
all models.

Among the 11 studies, different ML models were used, and their
methods of derivation varied. Clinical predictors and outcomes for
training the ML models utilised in the 11 studies are summarised
in Table 4. A summary of ML modalities, including the ML model
used, software algorithm, training procedure, and optimisation
of metrics, is presented in Table 4. The quality of training data,
including type of study, cohort size, normalisation/standardisation,
and validation, is presented in Table 4 and Supplementary Table 7.
Tahle 5 summarises the studies included for each post-PCI outcome.
In all, four studies investigated bleeding outcomes, three studies
investigated acute kidney injury outcomes, five studies investigated
in-hospital mortality and one study investigated myocardial
infarction (Table 3, Table 5). Two studies used artificial neural
networks, two used support vector machines, two used random
forest algorithms, three used logistic regression models, one used
a blended model with gradient descent boosting, two used LASSO
techniques, two used adaptive boosting, two used extreme gradient
boosting, one used a boosted classification tree algorithm (AI-BR)
model, and one used a k-nearest neighbour algorithm. There were
concerns about the development of the models. Of the 11 included
studies, 10 were studies conducted using data from a single country
(seven in the USA, two in China, one in Japan); only one study was

a multinational study. The methods of dealing with missing data
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Records identified through database Additional records identified through
= searching from date of inception-May 2021 hand search
e (n=2,546) (n=0)
5.5 PubMed: 610
3 Embase: 590
= Cochrane: 120
Scopus: 1,226
) Records after duplicates removed
(n=1,819)
=
§ Records excluded
'w,s Records screened (n=1,635)
(n=1,819) * No machine learning used for determining
outcomes post-PCl (n=1,248)
— e NoPCl (n=151)
— o Insufficient statistical reporting of
Full-text articles assessed for post-PCl outcomes (n=236)
eligibility
E‘ (n=184) Full-text articles excluded, with reasons
& (n=173)
= © No machine learning used for determining
outcomes post-PCI (n=53)
Articles included in qualitative e NoPCI (n=28)
synthesis * Relevant outcomes not reported (n=11)
(n=11) o Nofull text available (n=43)
e Repeated study (n=6)
3 * Not a cohort study/case-control
B study/randomised controlled trial (n=3)
2 Articles included in quantitative o Non-English article (n=3)
synthesis (meta-analysis) * Insufficient statistical reporting of
(n=11) post-PCl outcomes (n=26)

Figure 1. Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flow diagram of study selection.

PCI: percutaneous coronary intervention

were another issue that surfaced. The most common way of dealing
with missing data was imputation. However, four studies did not
discuss how missing data were handled. One study removed patients
if any of the predictor variable data points were missing. In the
validation stage, most studies utilised internal validation methods,
with four studies using holdout analysis by splitting the dataset into
training and test sets, and five studies using N-fold cross-validation.
Only three studies externally validated the models presented. There
could be concerns over the applicability of the models. While most
of the studies presented evidence that the model can be used and
interpreted in the clinical context, none of the studies discussed the
cost-effectiveness of implementing the model.

Discussion
In this systematic review, we demonstrated that ML models may
be useful as an adjunct to existing traditional risk stratification
scores in predicting outcomes post-PCI, with moderate to high
NPV and AUC.

Traditional risk stratification scores used to predict outcomes
post-PCI include the Primary Angioplasty in Myocardial Infarction
risk score?, the RISK-PCI score®, and the New Mayo Clinic Risk
Score?. However, such scores are limited by their primary reliance
on linear models and diminished ability to explore higher order
interactions®’, as they are built on parametric and semiparametric
regression scoring systems. Traditional statistical modelling,
which is also used to predict outcomes post-PCI, assumes a linear
relationship between the variables and logarithmic odds of
outcomes®. These limitations render traditional risk stratification
scores and statistical modelling effective at making predictions at
a population level, but less effective at accurately predicting an
individual’s risk®.

Compared to the ML models?, the AUCs for bleeding using
traditional scores, such as the Primary Angioplasty in Myocardial
Infarction risk score, Thrombolysis in Myocardial Infarction
(TIMI) risk score, Global Registry of Acute Coronary Events
risk score, and Controlled Abciximab and Device Investigation
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Table 3. Sensitivity, specificity, PPV, NPV, and accuracy reported by studies that applied an ML method to predict different clinical
outcomes post-percutaneous coronary intervention.
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Model ML model Sensitivity Specificity Accuracy
In-hospital mortality (best)
D'Ascenzo 202116 K-nearest neighbour 0.57 (0.53, 0.61)
D'Ascenzo 20211 Adaptive boosting 0.91(0.91,0.91) | 0.21(0.19,0.23) | 0.98(0.98,0.98) | 0.89(0.89,0.90) | 0.82(0.79, 0.85)
Gao 2020 (training set) LASSO 0.98 (0.93, 0.99)
Gao 2020 (validation set) LASSO 0.95(0.92,0.97) | 0.63(0.47,0.77) | 1.00(0.98,1.00) | 0.95(0.92,0.97) | 0.99(0.98, 1.00)
Al'Aref 2019% Adaptive boosting 0.93(0.92, 0.93)
Matheny 20072 SWM 0.92(0.91,0.92)
Kulkarni 20212 ANN 0.92 (0.90, 0.94)
D'Ascenzo 2021 K-nearest neighbour 0.88 (0.87,0.89) | 0.17 (0.16,0.19) | 0.98(0.98,0.98) | 0.87(0.86, 0.87)
D'Ascenzo 202116 Adaptive boosting 0.55(0.51, 0.59) 0.82(0.79, 0.85)
Gao 2020 (training set) LASSO 0.92 (0.90, 0.93) | 0.51(0.44,0.58) | 1.00(0.99, 1.00) | 0.92(0.90,0.94) | 0.99(0.98, 0.99)
Gao 2020" (validation set) LASSO 0.96 (0.80, 0.99)
Al'Aref 2019 Random forest 0.89(0.89, 0.90)
Matheny 20072 SVM 0.88 (0.87, 0.88)
Kulkarni 2021% ANN 0.81(0.76, 0.86)
D'Ascenzo 202116 Random forest 0.67 (0.63, 0.71)
D'Ascenzo 20211 Adaptive boosting 0.79(0.78, 0.80) | 0.10(0.09,0.11) | 0.98(0.98,0.98) | 0.78(0.78,0.79)
Wang 2020'¢ SWM 0.73(0.71, 0.75)
Wang 2020 ANN 0.72(0.70,0.74) | 0.71(0.69,0.73) | 0.73(0.71,0.75) | 0.72(0.71,0.73)
D'Ascenzo 202116 Random forest 0.63 (0.62, 0.64) | 0.07(0.06,0.07) | 0.98(0.98,0.98) | 0.63(0.62, 0.64)
D'Ascenzo 202116 Adaptive boosting 0.58 (0.54, 0.62)
Wang 2020'¢ SWM 0.65(0.63, 0.67) | 0.67(0.65,0.69) | 0.71(0.69,0.73) | 0.69 (0.68, 0.70)
Wang 2020'¢ ANN 0.72 (0.70, 0.74)

Bleeding (best)
Blended model with
Mortazavi 2019% gradient descent 0.37(0.37,0.37) | 0.95(0.95,0.95) | 0.27(0.26,0.27) | 0.97(0.97,0.97) | 0.93(0.93,0.93)
boosting

Boosted classification

1 9
Rayfield 2020 tree alaorithm 0.77 (0.72,0.82) | 0.81(0.80,0.82) | 0.07 (0.06, 0.08) | 0.99(0.99, 1.00) | 0.81(0.80, 0.81)
Gurm 20142 Random forest 0.89 (0.88, 0.90)
Kulkarni 20212 ANN 0.80 (0.86, 0.89)

Bleeding (worst)

Existing simplified risk
Mortazavi 2019 score with LASSO 0.35(0.35,0.35) | 0.93(0.93,0.93) | 0.20(0.20,0.20) | 0.97 (0.97,0.97) | 0.91(0.91,0.91)
regularisation

Boosted classification

Rayfield 2020° Ve Contim 0.77 (0.72,0.82) | 0.81(0.80,0.82) | 0.07 (0.06, 0.08) | 0.99(0.99, 1.00) | 0.81(0.80, 0.81)

Gurm 20142 Random forest 0.88 (0.87, 0.89)
Kulkarni 2021 ANN 0.73(0.71, 0.76)
Acute kidney injury (best)

Huang 2018° XGBoost 0.76 (0.76, 0.76)
Kulkarni 20212 ANN 0.82(0.81,0.83)
Kuno 20212 Logistic regression 0.83 (0.81, 0.84)
Huang 2018* Logistic regression 0.71(0.71,0.71)
Kulkarni 20212 ANN 0.63 (0.59, 0.66)
Kuno 20212 Logistic regression 0.81(0.80, 0.83)

Values in parentheses are 95% confidence intervals. ANN: artificial neural network; AUC: area under the curve; LASSO: least absolute shrinkage and selection operator; ML: machine learning;
NPV: negative predictive value; PPV: positive predictive value; SVM: support vector machine; XGBoost: eXtreme Gradient Boosting
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to Lower Late Angioplasty Complications risk score (AUC=0.60,
0.62, 0.58, and 0.79, respectively)®”, demonstrated lower values.
This suggests a better performance of ML models, compared
to traditional predictive models, in prognosticating patients
for bleeding risk post-PCI. Compared to that of the best ML
models?*®, the AUC for predicting acute kidney injury using
the Primary Angioplasty in Myocardial Infarction risk score
(AUC=0.71)* demonstrated a lower value, whilst ML models were
outperformed by other traditional risk models such as the TIMI
risk score, Global Registry of Acute Coronary Events risk score,
and Controlled Abciximab and Device Investigation to Lower
Late Angioplasty Complications risk score (AUC=0.83, 0.78, and
0.98, respectively)®. Several studies have also shown traditional

statistical methods to have a similar performance to ML in clinical

prediction situations'®*®. Hence, traditional risk stratification
scores and statistical modelling are still crucial in clinical practice,
but ML models, which are free of linear assumptions and have
the additional benefit of being able to control collinearity by
optimising hyperparameters®, may be used as an adjunctive tool to
augment clinicians’ decision-making regarding personalised risk-
benefit analysis®*? on whether or not a patient should undergo
elective PCIL

In contrast to traditional statistical methods, ML models tend
to incorporate a diverse range and greater number of clinically
relevant key variables in the training process, comprising
demographic characteristics, medical history, preprocedural
imaging characteristics, and procedural characteristics, as well

as postprocedural complications and outcomes (Supplementary

Table 4. Systematic review and quality assessment of included studies.

Author ‘ Al'Aref!® D’Ascenzo’ Gao" Gurm?' Huang®
Type of study Cohort — retrospective Cohort — retrospective Cohort — retrospective | Cohort — retrospective Cohort — retrospective
(training set)
Cohort — prospective
(validation set)
Cohort size 479,804 19,826 316 30,985 947,091
Cohort country USA 15 tertiary hospitals in China USA USA
North and South
America, Europe, and
Asia+12 European
hospitals
Development
Cohort PCIRS database BleeMACS registry Hebei General Hospital, | BMC2: all non-federal NCDR CathPCI
population (ClinicalTrials.gov: Baoding First Central hospitals in the state of
NCT02466854) and the | Hospital, and Cangzhou | Michigan
RENAMI Central Hospital
registry-+RENAMI
Normalisation/ | Yes —done before use in | Not reported Yes — all data were Not reported Yes — may be performed during feature

standardisation

model training and

normalised by

engineering step

learning model

random forest, XGBoost,
logistic regression

k-nearest neighbour

validation transforming the data
into new scores (z-score
transformation) with a
mean of 0 and a
standard deviation of 1
Validation Yes (5-fold Yes (internal validation, | Yes (internal validation, | Yes (independent Yes (temporal validation performed on a more
cross-validation) external validation) external validation) validation) contemporary cohort of PCI patients from the
NCDR CathPCl registry)
Machine Adaptive boosting, Adaptive boosting, LASSO Random forest Logistic regression, XGBoost

Software Not reported SPSS Statistics, version | R software, version 3.3.0

algorithm 24.0 (IBM) (R Foundation for
Statistical Computing)
and Glmnet R package
was used for the LASSO

regression model

R software, version
2.14.1, using freely
distributed contributed
packages

All analyses were developed in R. LASSO
regularisation with logistic regression was
performed using the Glmnet R package.
XGBoost was performed using the XGBoost R
package. Brier score, reliability, and resolution
were calculated with the SpecsVerification R
package




Table 8). This facilitates the development of a more robust
algorithm, guiding the prediction of post-PCI outcomes in clinical
practice in a more precise manner.

Moreover, ML models, especially deep learning models, are
adept in handling high-dimensional and complex data. This is
particularly beneficial in healthcare systems, where a vast amount
of data is constantly generated from diverse sources. While
traditional methods can capture non-linear relationships, ML
models can do so in a more flexible manner and without need
for explicit specification of polynomial terms and interaction
variables. In addition, techniques like cross-validation and
regularisation in ML can facilitate the development of models
that generalise better on unseen data, a key consideration in

clinical applications.

ML accuracy in predicting outcomes post-PCl

It is worthwhile to note that Greenhalgh et al previously published
a multilevel non-adoption, abandonment, scale-up, spread, and
sustainability (NASSS) framework for studying the diffusion of
innovations and promoting technology adoption in healthcare
systems®. This framework takes into account key factors including
the condition, technology, value proposition, adopters, organisation,
the wider system, and adaptation over time. Application of this
framework to ML models in PCI could potentially aid in the
translation of algorithmic success to patient benefit.

The high NPVs using the ML models for in-hospital mortality,
myocardial infarction, and bleeding, of 100%, 99%, and 98%,
respectively, demonstrate that patients who were predicted not
to have poor outcomes post-PCI indeed did not suffer from such

complications, thus guiding risk-benefit analysis for PCI. Poor

Table 4. Systematic review and quality assessment of included studies (cont'd).

Kulkarni® Kuno? ‘ Matheny?

Cohort — retrospective Cohort — retrospective | Cohort — retrospective

Mortazavi'®

Cohort — retrospective

Rayfield®

Cohort — retrospective

Wang'®

Cohort — retrospective

validation inner and outer
loop method)

retrospective dataset) validation)

cross-validation)

26,784 14,273 7,914 PCls 3,316,465 15,604 10,886

USA Japan USA USA USA China

Seven hospitals — Alton JCD-KiCS registry BWH (Boston, MA) NCDR CathPCI Mayo Clinic CathPCl Sir Run Run Shaw
Memorial Hospital, Alton, IL; containing all cases registry data hospital (Hangzhou,
Barnes-Jewish Hospital, St. (7,914) of PCI performed Zhejiang, China)
Louis, MO; Barnes-Jewish St. at the institution from 1

Peters Hospital, St. Peters, MO; January 2002 to 31

Boone Hospital Center, December 2005

Columbia, MO; Christian

Hospital, St Louis, MO; Missouri

Baptist Medical Center, St.

Louis, MO; and Progress West

HealthCare, 0'Fallon, MO

Yes — normalisation done for Not reported Not reported Not reported Not reported Not reported
continuous variables before use

in model training and validation

Yes (validation with a separate | Yes (automatic system | Yes (3-fold cross- Yes (5-fold cross-validation) Yes (10-fold Yes (4-fold

cross-validation)

ANN MLP model Support vector machine-P
(CEE)-optimised, support
vector machine-R

(MSE)-optimised

Logistic model

Blended model with gradient
descent boosting, existing
simplified risk score with LASSO
regression

Al-BR model

Artificial neural
networks, support
vector machine

Statistical calculations | SVM models were

and analyses performed | developed using GIST
using SPSS Statistics, (Columbia University, New
version 24, R 3.5.3 and | York, NY, USA) 2.2.1. LR
Python 3.7 (Python models were developed
Software Foundation) using SAS, version 9.1
(SAS Institute)

All analyses were carried out on
R statistical software or Stata
(StataCorp)

All analyses were conducted in
R (version 3.3.2), with GImnet
used for LASSO regularisation,
XGBoost for gradient descent
boosting and pROC for C
statistics; mgev and sandwich
were used for the continuous
calibration curves and
SpecsVerification was used for
the Brier score

R software, version
351

Python 3.x
software+SPSS
Statistics for mac0S,
version 23
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Table 4. Systematic review and quality assessment of included studies (cont'd).

Author ‘ AlAref!® ‘ D’Ascenzo' ‘ Gao" ‘ Gurm? Huang®
Development
Training 5-fold cross-validation The derivation cohort The LASSO method was | The study cohort was 9 prediction models were developed, with
procedure on the dataset foreach | was randomly splitinto | used to select the divided randomly into combinations of the following 3 categories: (1)
model. Attribute 2 datasets: a training features that were the training and validation preprocessing models (strategy A vs
selection was done after | (80%) cohort, which was | most significantly datasets, with 70% of strategy B), (2) variable selection (stepwise
fine-tuning of the used to train the 4 ML associated with the procedures assigned to backward selection with logistic regression vs
hyperparameter models and tune their outcome (in-hospital training, and the LASSO regularisation with logistic regression
— defined as the model parameters, and an mortality). Then, a remaining 30% utilised | vs permutation-based selection with XGBoost)
parameters that are internal validation regression model was for validation. A random | and (3) relationship modelling: (logistic
given an arbitrary value | (20%) cohort, which was | built using the selected | forest regression model | regression model vs ML method XGBoost).
before the initiation of used to test the variables. The A value was trained for Analytic cohort was randomly split into a
the learning process. developed models on was selected for which predicting transfusion training set (70% of the cohort) and a test set
Attribute selection was unseen data and to the cross-validation error | using 45 baseline (30% of the cohort). The 9 models were built
performed using the fine-tune the was the smallest. Finally, | clinical variables using data from the training set only, and the
information gain ranking | hyperparameters. To the model was refitted including preprocedural | corresponding selected variables were
method that aims at determine the major using all available medications, with recorded. Finally, the performance of the
ranking features based | predictors of each study | observations and the missing predictors models was assessed on the internal test set.
on high information gain | outcome in our patient selected A. Thus, most of | imputed to be the overall
entropy. The attributes population, the the coefficients of the median for continuous
with information gain importance of each covariates were reduced | values and mode for
>0 were only used for permutation feature was | to 0, and the remaining | categorical variables.
the ML approach. measured from the final | non-zero coefficients The transfusion outcome
model. Permutation were selected by LASSO. | was entered as a
feature importance continuous variable
computes the value of coded as 1 in patients
each feature included in who were transfused,
the model by calculating and 0 for those not
the increase in the meeting the criteria to
model’s prediction error facilitate regression
after permuting its rather than
values. A feature is classification modelling,
considered important if so that estimated means
permuting its values (leaf node probabilities
decreases the model’s of transfusion) assigned
discriminative capability, to a given observation
as the model relies were then aggregated in
heavily on that feature the ensemble. To
for the prediction. facilitate the
development of an
easy-to-use bedside tool,
a reduced model was
also trained using only
the 14 most important
predictors as assessed
in the full model by the
incremental decrease in
node impurity (residual
sum of squares)
associated with splitting
on the predictor
averaged over all trees in
the ensemble.
Optimising AUC AUC AUC AUC AUC, Brier score, resolution, reliability
metrics

Al-BR: boosted classification tree algorithm; AKI: acute kidney injury; ANN: artificial neural network; AUC: area under the curve; BleeMACS: Bleeding complications in a Multicenter registry of
patients discharged with diagnosis of Acute Coronary Syndrome; BMC2: Blue Cross Blue Shield of Michigan Cardiovascular Consortium 2; BWH: Brigham and Women's Hospital; CEE:
cross-entropy error; HL: Hosmer-Lemeshow; JCD-KICS: Japanese Cardiovascular Database-Keio interhospital Cardiovascular Studies; LASSO: least absolute shrinkage and selection operator;

outcomes such as in-hospital mortality, myocardial infarction,
and bleeding, might diminish the overall utility of PCI. The high
discriminatory value serves as a good adjunctive clinical tool to allow
clinicians to weigh the risks and benefits of PCI for their patients.

We have also critically appraised the studies along the key
elements of the translational pathway. Development is hampered
by the population in each cohort. Of the 12 cohorts included,
seven cohorts analysed populations in the USA3151921.33 " three



ML accuracy in predicting outcomes post-PCl

Table 4. Systematic review and quality assessment of included studies (cont'd).

Kulkarni®

Kuno? ‘

Matheny?

Mortazavi'®

Rayfield®

Wang'®

Randomly shuffled dataset was
split into a derivation set
(n=21,004) and a validation
dataset (n=7,001). All training
for ML algorithms used data from
the derivation set, while all
models were validated on data
from the validation set. Data
preprocessing was undertaken
using variable encoding. The 2
generated datasets were used to
develop 2 separate learning
models for each outcome — one
incorporating baseline and
pre-PCl variables, and the other
incorporating variables related to
the PCI procedure. Predictions
from these two models were then
finally combined into a single
prediction model using logistic
regression. For each training
epoch, the estimated best fitting
model was independently applied
to the test set (the encoded
dataset obtained from the
validation set) to trace the
classification accuracy. Model
training continued as long as
there was improvement in the
classification accuracy for both
the training and the
independently assessed test set.
If the model only showed
accuracy improvement in the
training set but showed a
decreased accuracy for the test
set, then a potential overfitting
was interpreted, and model
training was stopped.

Restricted cubic spline
with multivariate
logistic regression
models were used to
assess the association
between absolute/
relative decrease in
haemoglobin and AKI.
ML was constructed
with a neural network to
evaluate the
association between
periprocedural
haemoglobin reduction
and AKI and for risk
stratification of AKI, by
comparing the effect of
NCDR variables versus
NCDR variables plus
haemoglobin absolute
change (continuous
value) versus NCDR
variables plus
haemoglobin relative
change (continuous
value) and with logistic
models.

The cases were used to
generate 100 random
datasets. All cases were
used in each set, and
5,540 were allocated for
training and 2,374 were
allocated for testing. For
SVM evaluation, each
training set was randomly
divided into 3,957 kernel
training and 1,583
sigmoid training portions.
The parameter of each
kernel type (d and w for
the polynomial and
Gaussian kernels,
respectively) and the
magnitude of the constant
applied to the soft margin
were optimised on the
kernel training set
separately for AUC, HL 2,
MSE, and CEE indices by
a grid search method,
using 3-fold cross-
validation. The sigmoid
training set was used to
convert SVM results into
probabilities. Using the
training set cross-
validation results for each
of the performance
measures, the best set of
parameters for the radial
and polynomial kernels
were used to generate a
model on the entire kernel
training set, and a
sigmoid for discriminant
conversion was generated
using the sigmoid training
set. Each of the models
was then evaluated using
the respective test
dataset. Logistic
regression was chosen to
provide the benchmark for
SVM comparisons, with
similar 3-fold
cross-validation
performed on each
training dataset to
optimise feature selection
threshold for AUC, HL 2,
MSE, and CEE
performance measures.

Derivation and validation
cohorts were created using
stratified 5-fold cross-
validation. Each variable set
was divided randomly into

5 equal subsets, preserving the
same event rate in each subset,
by first randomly dividing
bleeding cases and then
non-bleeding cases. Each
bleeding subset was then
paired with 1 non-bleeding
subset. The derivation cohort
combined 4 (80%) of the
subsets; the remaining subset
(20%) was reserved as a
validation set. This process was
repeated 5 times, such that
each of the subsets served as
the validation set. Two methods
were used to train models in the
analysis: logistic regression
with LASSO regularisation and
gradient descent boosting

— XGBoost. The final model used
1,000 trees, a learning rate of
0.1, and a maximum depth of
each tree of 6, and it was
trained with an objective
function aimed at minimising
errors similar to logistic
regression for binary
classification (bleed vs
non-bleed).

All recorded variables
were considered
candidate variables.
The variables, once
scaled, were fed into an
Al-BR. This model
trained the base
estimator on the
training set and
observed the training
data samples that the
base estimator
misclassified and
created a weighted
coefficient for these
samples. A second base
estimator was then
trained, applying the
above weight
coefficient, to samples
when calculating the
entropy measure of
homogeneity. Boosting
was performed to create
successive base
classifiers that were
programmed to place
greater emphasis on
the misclassified
samples from the
training data. Finally, a
probability of class
membership was
calculated based on the
sum of the individual
tree results for each
patient. If the sum was
>50% probability of
bleeding, the patient
was predicted to have
bled.

Feature selection by
information gain
measured how much
information an attribute
gave researchers about
the outcome to be
predicted. Class-
balanced oversampling
method was another
approach to balance
the imbalanced
dataset. Drop
imputation and mean
imputation were
individually applied in
the dataset to build ML
models.

AUC

AUC

AUC, mean squared error,
mean CEE, HL
goodness-of-fit test

AUC

ROC curve

AUC of ROC curve

LR: logistic regression; ML: machine learning; MLP: multilayer perceptron; MSE: mean squared error; NCDR: National Cardiovascular Data Registry; PCI: percutaneous coronary intervention;
PCIRS: Percutaneous Coronary Interventions Reporting System; RENAMI: REgistry of New Antiplatelets in patients with Myocardial Infarction; ROC: receiver operating characteristic;
SVM: support vector machine; XGBoost: eXtreme Gradient Boosting

cohorts analysed populations in China'”!®, one cohort analysed
populations in Japan®, and one cohort analysed populations
across North America, South America, Europe, and Asia'®. The
small number of countries where these ML models have been

developed could limit the generalisability of the results to other
The
applicability of the results could also be reduced by the lack of

potentially underinvestigated, underserved populations.

external validation. To date, only one study'® externally validated

2€2-612:01'7202 UoNUAAIEISY |
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Table 5. Summary table of studies included for each outcome.

Outcome Numbgr g Studies included
studies
] Gurm 20142
Bleeding AUC 2 Kulkarni 20212
Huang 20183
Acute kidney injury AUC 3 Kulkarni 202123
Kuno 2021%
D’Ascenzo 202116
Gao 2020V
In-hospital mortality AUC 3 Al'Aref 2019%°
Matheny 20072°
Kulkarni 202123
Bleeding sensitivity, specificity, 5 Mortazavi 2019'°
PPV, NPV, and accuracy Rayfield 2020°
Myocardial infarction sensitivity,
specificity, PPV, NPV, and 1 D’Ascenzo 202116
accuracy
In-hospital mortality sensitivity, ,

g D’Ascenzo 202116
specificity, PPV, NPV, and 2 Gao 202017
accuracy
AUC: area under the curve; NPV: negative predictive value; PPV: positive
predictive value

the model in a multinational cohort. More resources should be
allocated to validate the model and apply the results in more
diverse patient populations. Another issue of missing data surfaced
in our analysis. Four studies did not discuss how missing data
were handled. One study conducted complete case analysis by
removing patients with missing predictor variable data points.
Unclear methods of handling missing data, or complete case
analysis, may lead to underpowered studies or bias, especially if
the data are not missing at random>*.

Limitations
To the best of our knowledge, this is the first review to critically
appraise and review the accuracy of ML models used in predicting
outcomes post-PCI. Comprehensive data comprising baseline
clinical characteristics, training procedures for ML models, quality
of training data and ML outcomes were retrieved, analysed, and
synthesised from individual studies to evaluate the accuracy of
ML models in predicting pertinent post-PCI outcomes.
Nonetheless, this study should be interpreted in the context of
known and potential limitations. Firstly, there existed significant
heterogeneity among the studies included in this systematic
review. For the clinical predictors reported, while the categories
of predictors used were largely similar, the individual predictors
included in each category differed across the studies. The
baseline demographics of study populations also differed, and the
duration of follow-up for post-PCI outcomes was not reported
in the majority of the included studies. Most studies examined
supervised machine learning techniques such as LASSO and
random forest models (Table 4). Also, the performance between
different models, particularly that of deep learning networks and
traditional supervised ML models, was not reported. Further
studies should be conducted to explore the different ML models

and to determine which ML models have the best predictive
performance.

Secondly, while the quality of training data was overall high,
the majority of the studies (n=10) were retrospective in nature,
which may further introduce bias into the training of ML models.
Moreover, software algorithms and training procedures employed
for ML models across studies were not standardised. Also, ML
models can be very sensitive to the optimisation model chosen?.
Thus, caution should be exercised before declaring any model to
be superior to other risk prediction tools.

Thirdly, the “black box” technology of ML models leads to
these models being complex and unpredictable because of a lack
of transparency about the underlying decision-making processes.
Input data may undergo complex transformations in multiple
layers of the algorithm, with the relationship between individual
clinical predictors and contribution of each predictor to the outcome
unknown to the user®. The complex datasets utilised in ML models
may also be prone to missing data, unmeasured confounding, and
systemic errors, all of which may further compromise the validity
of the models’ predictions®. Also, ML models with low sensitivity
may miss patients at risk of adverse outcomes post-PCI. This
may impact clinicians’ ability to accurately weigh the risks and
benefits of elective PCI, affect preprocedural counselling, and may
potentially lead to medico-legal issues. To mitigate this issue, the
developers of ML algorithms should define the purpose (screening
vs diagnosis) of the ML models and choose a binary threshold in the
validation set to derive appropriate sensitivities. In the usage of low-
sensitivity ML models, outcome predictions made using ML models
must ultimately still be interpreted cautiously in appropriate clinical
contexts, which should be done by experienced clinicians.

Lastly, while the findings of our research are informative
and useful for understanding PCI outcomes, it is important to
acknowledge that they may not be universally applicable to
all scenarios. This is due to the fact that all of the included
studies are single-centre studies, four of them have unclear
data handling strategies, and only three externally validated
the models presented. This significantly increases the risk of
overfitting to training data, limiting the interpretation of good
model performance. Thus, it is challenging to comment on the
definitive benefit of real-world effectiveness. The majority of
the studies also focused on the USA (seven studies), with two
studies focused on China, but not other countries, limiting
generalisability. In light of the fact that the robustness and
generalisability may be overstated, PROBAST was performed.
Ultimately, outcome predictions by ML models must still be

interpreted judiciously and contextualised to each case.

Conclusions

In this systematic review, we demonstrated that ML models may be
a valuable clinical adjunct to existing traditional risk stratification
scores in predicting outcomes post-PCI, with moderate to high NPV
and AUC. Such a clinical tool may one day guide clinicians in
prognostication of complications and the selection of patients with



the most optimal risk-benefit profile to undergo the procedure. The
limitations of the findings are difficult to address in the near future,
as the data and technological needs to incorporate ML models into
daily clinical practice would require some time to develop. Given
the heterogeneity and retrospective design of the studies analysed,
future prospective studies are required to investigate the accuracy
of ML models more consistently. Employment of larger datasets
to train ML models, and refinement of existing ML algorithms
via improvements in development and validation may also help to
improve the sensitivity, specificity, predictive values, and accuracy
of ML models to facilitate their meaningful use in clinical practice.

Impact on daily practice

We suggest that machine learning (ML) can be used as an adjunct
to help clinicians weigh the risks and benefits of percutaneous
coronary intervention (PCI) versus continued medical therapy in
elderly patients with multiple comorbidities who are at higher
risk of complications. When a patient presents for elective PCI,
clinicians can extract demographic data and past medical history
from the electronic health records and enter them into the ML
algorithm. Following a targeted history, physical examination,
and investigations, clinicians can input further relevant data,
including preprocedural imaging data, into the ML algorithm,
to determine the potential benefit and personalised risk, so
that patients can make a better-informed decision. By selecting
the most suitable patients with precision medicine, morbidity,
mortality, and healthcare burden can be decreased.
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Supplementary data

Supplementary Table 1. Search terms.

Concept

Search Terms

Machine Learning

“machine learning” OR “convolutional network™ OR “deep network™
OR “neural network™ OR “neural networks” OR “bayesian network”
OR “classification tree” OR “regression tree” OR “probability tree”
OR “multilayer perceptron” OR “artificial intelligence” OR “deep
learning” OR “decision trees” OR “random forest” OR “support vector

machine” OR “SVM” OR “elastic net” OR “ridge” OR “lasso”

Prediction

“predictive modelling” OR “predictive model” OR “predict” OR
“prediction” OR “forecast” OR “learning algorithm” OR “learning

algorithms” OR “bayesian logistic regression”

Percutaneous Coronary Intervention

“percutaneous coronary intervention” OR “PCI” OR “drug eluting
stent” OR “coronary stent” OR “coronary angioplasty” OR
“angioplasty with stent” OR “stent” OR “angina” OR “myocardial

infarction” OR “acute coronary syndrome” OR “ACS”




Supplementary Table 2. Evaluation of risk of bias using the Newcastle-Ottawa Scale (NOS).

2020

Study Representative | Selecti | Ascertainme | Demonstrati | Comparabili | Assessmen| Was Adequac | Fin | Risk
ness of cohort on of nt of on that | ty of cohorts | t of follow- |y of al of

the exposure outcome of | on the basis | outcome | up long | follow- | scor | bias

non- interest was | of the design enough | up of e

expose not present | or analysis for cohorts

d at start of | controlled outcom

cohort study for es

confounders to occur

Al'Ar * * * * * 5 Moderate
ef
2019
D'Ascen | * * * * * 5 Moderate
zo 2021
Gao 2020 | * * * * * 5 Moderate
Gur * * * ® * 6 Moderate
m
201
4
Kulkarni | * * * * * 5 Moderate
2021
Kuno * * * *x * 6 Moderate
2020
Mathe * ¥ * *x * 6 Moderate
ny
2007
Mortazavi| * * *x * * 6 Moderate
2019
Rayfie * * * * ok * 7 Moderate
1d




Supplementary Table 3. Evaluation of risk of bias using the Prediction Risk of Bias ASsessment Tool (PROBAST).

Study  [Participants Predictors |Outcomes | Analysis Overall

Al'Ar + - + + -
ef
2019
D'Ascen | + ? + + +
70 2021
Gao 2020
Gur + + + - -
m
201
4
Kulkarni | + - + + +
2021
Kuno + - + + -
2020

Mathe + + + - +
ny

2007
Mortazavi| + - + ? ?
2019
Rayfie + - + - -
1d

2020

_.|_
1
_|_
_|_
1

*+ indicates low ROB/low concern regarding applicability; - indicates high ROB/high concern regarding applicability; and ? indicates unclear ROB/unclear concern
regarding applicability



Supplementary Table 4. Additional data on participant baseline characteristics (demographics).

STUDY | AGE (mean | MALES PRESENT | BMI (kg/m2) | DM (%) HTN (%) | HLD (%) AF (%) CAD (%) | Prior MI Prior Prior PCI Prior LVEF (%)
NAME years. :gtg)l), (%) SMOKER (%) (%) CVA/TIA (%) (%) CABG (%)

Al'Aref 652411.9 31.5 NR 29.4£5.9 337 NR NR NR NR NR NR 221 16.5 50.6£14.5

2019

Daeenzo 64 (54-73) 78.0 NR NR 248 559 51.0 NR NR 12.6 56 12.7 27 55 (39-61)

Ga0 2020 | 25.40+3.45 712 40.8 25.40+3 .45 20.9 472 NR NR NR NR NR NR NR 53.94+7.62

Gurm 2014 | 64.91£12.08 | 65.6 29.7 30.51+7.54 371 85.2 832 NR NR 354 NR 453 18.7 52.08+12.67

Huang 64.8£12.2 328 NR 30.1+11.8 358 81.8 NR NR NR 29.8 122 39.7 18.6 NR

2018

21(612111<am1 656 653 77.0 NR 704 338 845 NR NR 343 6.7 196 725 521

Kuno 202T 68.4£11.6 79.0 NR NR 404 728 63.8 NR NR 209 8.9 31.9 43 NR

%%t;wny NR NR NR NR NR NR NR NR NR NR NR NR NR NR

Mortazavi | 65 68.1 NR 29 37.0 82.1 NR NR NR NR NR 412 18.1 NR

2019

Rayfield T 29.75 (26.33-

Rayt 67£12.7 70.0 NR %93 5)( 25.9 64.2 NR NR NR 7.0 NR 30.5 15.6 NR

Wang 2020 64.5T£18.3 67.0 39.0 23.44£10.81 27.0 71.0 NR NR NR NR 23.0 25.0 NR NR
62.4521.32 69.0 42.0 23.98%£6.11 24.0 54.0 NR NR NR NR 19.0 33.0 NR NR
67.85£10.05 69.0 39.0 24.54+9.52 27.0 73.0 NR NR NR NR 23.0 25.0 NR NR
67.7T£9.88 75.0 420 2477¥4.4 240 69.0 NR NR NR NR 19.02 33.0 NR NR

Abbreviations: AF: Atrial fibrillation; BMI: Body mass index; CABG: Coronary artery bypass graft; CAD: Coronary artery disease; CVA:
Cerebrovascular accident; DM: Diabetes mellitus; HLD: Hyperlipidaemia; HTN: Hypertension; LVEF: Left ventricular ejection fraction; MI:
Myocardial infarction; PCI: Percutaneous coronary intervention; TIA: Transient ischemic attack




Supplementary Table 5. Additional data on participant baseline characteristics (medications).

ANTIPLATELE ANTICOAGULAN ° ACE INHIBITORS 9.)| CALCIUM CHANNEL
Study TS (%) TS (%) STATINS (%) / ARBs (%) BETA BLOCKERS (%) BLOCKERS (%)
AT Aref 2019 NR NR NR NR NR NR
D'Ascenzo Clopidogrel:  68.4;| 4.2 80.4 63.5 68.2 NR
2021 Prasugrel: 11.8;

Ticagrelor: 16.9
Gao 2020 NR NR NR 56.8 (Training set); 72.6 (Training set); NR

60.4 (Validation set) 76.6 (Validation
set)

Gurm 2014 NR NR NR NR NR NR
Huang 2018 NR NR NR NR NR NR
Kulkarni 2021 | Aspirin: 99.1;| Fondaparinux: 0.1; | NR NR 67.2 21.7

Bivalirudin: 67.4;| Low molecular

Clopidogrel: ~ 77.5; weig

Ticlopidine: 0.3; ht

Prasugrel: 10.5; heparin: 8.8;

Ticagrelor: 14.8 Unfractionated

heparin: 50.1

Kuno 2021 NR NR NR NR NR NR
Matheny 2007 | NK NK NR NR NR NR
Mortazavi 2019] NR NR NR NR NR NR
Raytield 2020 | NR NR NR NR NR NR
Wang 2020 83.6 91 81.9 NR NR NR

Abbreviations: ACE: Angiotensin-Converting Enzyme; ARB: Angiotensin Receptor Blocker;

NR: Not Reported




Supplementary Table 6. Additional data on participant baseline characteristics (procedure).

Study TIME TO CULPRIT MULTI- NUMBER PRIORITY TIMI STENOSIS TYPE OF NUMBER LENGTH DIAMETE ARTERY CALCIFIC FRACTIO CHRONIC PCI DURATIO
REPERFU LESION/ VESSEL OF (ELECTIV FLOW (%) MORPHOL STENT e.g. OF OF R OF ACCESS ATION (%) NAL TOTAL WITHOUT N OF
SION VESSEL DISEASE DISEASED E/ OGY Drug- STENTS STENTS STENTS (RADIAL FLOW OCCLUSI DILATATI FOLLOW-
RELATED (%) VESSELS URGENT/ eluting, (mm) (mm) OR RESERVE, ONS (%) ON (%) upP
TO (%) EMERGEN Bare metal {‘5 ORAL INTRAVAS
INFARCTI T/ o CULAR
ON e.g. SALVAGE ULTRASO
LAD, LCx, ETC.) (%) UND,
RCA OPTICAL
COHEREN
voss
2y NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR
T NR NR 58.2 NR NR NR NR NR NR NR NR NR NR NR! NR NR 1 year
Gao 2020 | NR NR NR NR NR TIEETT T NR NR NR NR NR NR NR NR NR NR NR
91.6
(Training
set); 0: 1.9,
1:1.3,2:5.4,
3 91.5
(Validation
set)
Gurm NR NR NR NR Elective: NR NR NR NR NR NR Femoral: NR NR NR NR NR
2014 41.2, Urgent: 89.7; Radial:
43.0, 9.9 (Training
Emergency: cohort);
15.6. Femoral:
Salvage: 0.2 89.7, Radial:
(Training 9.9
cohort); (Validation
Elective: cohort)
ﬂg, Urgent:
Emergency:
15.4,
Salvage: 0.2
(Validation
cohort)
Huang NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR
2018
Kulkarni Door to Left main 50.5 Elective: NR NR Drug-eluting Average 31.6 Average NR NR NR NR NR NR
2021 balloon time: stem, :@4 Urgent: stents, bare- number of minimum
74.5 min; proximal En’]’ﬂ ency: metal stents DES (n= stent
Symptom LAD, 3 silvayé 1.45); diameter:
action time: mid/distal 0 l"7 8¢ Average 2.87
395.6 min LAD, - number of
circumflex BMS (n=
artery, 0.18)
ramus, RCA,
proximal
LAD graft,
mid/distal
LAD graft,
circumflex
artery graft,
Rtgdh
Kuno NR NR NR NR NR NR NR NR NR NR NR Radial: n= NR NR NR NR NR
2021 7,092.
Femoral: n =
7,181
Matheny NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR
2007
Mortazav NR NR NR NR Elective: NR NR NR NR NR NR NR NR NR NR NR NR
12019 41.5, Urgent:
39.9,
Emergent:
égl%hge: 03
Rayfield NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR

2020




Wang NR Left NR NR NR NR TopeBIC NR 1.71+0.83 49.6624.92 | >2.5mm:2047] NR 16.0 13.0 11.0 11.0 NR
2020 coronary
artery: 26.0
NK eI NK NK NK NK TCC/ATIA NK T39700 5T0FZ0.TS =2 smmi 2115 K By T LAY 50 NK
coronary TypeB2C: =
artery: 30.0 409
NR Left NR NR NR NR ACC/AHA NR 1.71+0.83 >2.5mm: 2047 NR 16.0 13.0 11.0 11.0 NR
coronary TypeB2C:
artery:26.0 837 49.66+24.92
NR Left NR NR NR NR ACC/AHA NR 1.39+0.67 33.16+20.15 >2.5mm: 2115 NR 7.0 8.0 6.0 13.0 NR
coronary TypeB2C:
artery: 30.0 409

Abbreviations: LAD: Left Anterior Descending; LCx: Left Circumflex; NR: Not Reported; PCI: Percutaneous Coronary Intervention; RCA:
Right Coronary Artery; TIMI: Thrombolysis in Myocardial Infarction



Supplementary Table 7. Quality assessment of included studies.

Author

Al’Aref

D’Ascenz
0

Gao

Gurm

Huang

Kulkarni

Kuno

Matheny

Mortazavi

Rayfield

Wang

Question
Relates To
Patient
Benefit?

Is There A
Health
Question
Relating To
Patient
Benefit?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Target
Condition
Applicabilit
y?

Is There
Concern That
The Target
Condition As
Defined Does
Not Match
The Research
Question?

Data
Suitable
For Clinical
Question?

Is The Data
Suitable To
Answer The
Clinical
Question, LE.
Does It
Capture The
Relevant Real-
World
Heterogeneity,
And Is It Of
Sufficient
Detail And

Quality?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes




Patient
Applicabilit
y?

Is There
Concern That
The Included
Patients Do
Not Match
The Research
Question? Y/N




Patient
Selection
Bias?

Could The
Selection Of
Patients Have
Introduced
Bias?

The
exclusion
criteria were:
(1) STEMI
but No
primary PCI;
or (2) acute
non-STEMI
or unstable
angina

Patients who
underwent
coronary
artery bypass
grafting
during the
same
hospitalizatio
n were
excluded
from the
analysis
since a post
—operative
transfusion
could Not be
distinguished
from post
PCI
transfusion.
The choice
of vascular
access,
procedural
anticoagulati
on and
decision to
transfuse
was as per
the operator
preference
guided by
institutional
policy and
practice.

Possibly:
We
excluded
PClIs that
were Not
the first
during a
single
hospitalizati
on (n=
32,999),
procedures
with same-
day
discharge (n
=41,570),
missing
serum
creatinine
before or
after the
procedure (n
=208,158),
and
procedures
on patients
already on
dialysis at
the time of
their PCI (n
=24271). T

Unclear

Excluded
patients
whose pre-
and post-
procedural
creatinine
and
haemoglobi
n data were
missing.
Although
creatinine
levels in
relatively
stable
patients
were Not
consistently
assessed,
these
exclusions
could have
created a
bias in our
results.

Unclear

We only
included
the first
PCI
procedure
within the
same
episode
because
we have
unique
coded
identifiers
per
admission
and
procedure
identifiers
linked to
this. If a
patient had
a second
PClina
different
admission,
we treated
this as an
independe
nt
procedure
because
we did Not
have
patient
identifiers.
We added
an
exclusion
for patients
who

The patients
in the data
set might
have skewed
demographic
s, as they
were
predominant
ly white,
which has
implications
with external
validity.

Possibly:
The
excluded
criteria as
follows:
myocardia
1 infarction
patients or
elevated
pre-
procedural
cardiac
troponin |
(cTnl) or
creatine
kinase-MB
fraction
(CK-MB),
PCI for
more than
one artery,
coronary
artery with
thrombosis
translumin
al
extraction-
atherectom
y therapy
for culprit
artery,
severe
heart
failure (EF
<45% or
NT-pro
BNP >2.0
00), severe
valve




underwent diseases.
coronary
artery
bypass
grafting
(CABQG)
because
the high
risk of
bleeding
after
CABG
may
obscure
the
bleeding
risk
attributable
to PCI
alone;
these cases
were Not
excluded
in the
primary
prior
model.




Algorithm Is There No No No No No No No No No No No

Applicabilit | Concern That

y? The
Algorithm, Its
Conduct, Or
Interpretation
Differ From
The Research
Question?

Bias In Could The No No No No No No No No No No No

Algorithm? | Variable

2.1 Were Selection,

Predictors Predictor

Defined Selection Or

And Interpretation

Assessed In | Of The

A Similar Machine

Way For Learning

All Have

Participants | Introduced

? 2.2 Were Bias?

Predictor

Assessments

Made

Without

KNowledge

Of Outcome

Data? 2.3

Are All

Predictors

Available

At The

Time The

Model Is

Intended To

Be Used?




Treatment Of
Missing Data

Multiple
imputations
by chained
equations

Missing
data with
imputatio
n

Not
mentioned

Missing
predictors
imputed to
be the
overall
median for
continuous
values and
mode for
categorical
variables

Following
the same
strategy
used in the
baseline
model
developmen
t, missing
variables
were
imputed by
the most
common
value for
categorical
variables
and median
for
continuous
variables

The
second
step
included
data pre-
processin
g using
variable
encoding.
We aimed
to
maximize
the
informatio
n
contained
within a
variable
and
therefore
did Not
discard
any
records
with
missing
values.
Rather,
we coded
all
missing
values for
all
variables
as-1to
include
missing
informatio
nasa
separate

No mention
of missing
data

Not stated

Simple
data
imputation
strategy
due to the
low rate of
missing
values in
the data se

After the
entire cohort
was
obtained,
patients were
removed
from the
patient
cohort if any
of the 86
variable data
points,
including
bleeding
data, were
missing.

Mean
imputation




category

Hold-Out=
Simplest
Cross-
Validation
Where The
Dataset Is
Split Into A
'Training'
And 'Testing'
Set.

Yes

Yes

Yes




Leave-One- No No No No No No No No No No No
Out Cross-
Validation=W
hen Number
Of Folds
Equals The
Number Of
Instances In
The Data Set.
N-Fold Cross- | Yes No No No No No No Yes Yes Yes Yes
Validation=W
hen The Train
Dataset Is
Split Into “N”
Folds.
External No Yes Yes No Yes No No No No No No
Validation
Done
Source And | Randomised The best- Temporally
Size Of Controlled performin validated
External Trial g model with more
Validation for each contemporar
Dataset study y dataset
outcome
(the
PRAISE
score)
was tested
in an
external
validation
cohort of
3444
patients
with ACS
pooled
from a
randomise

d




controlled

trial and
three
prospectiv
e
registries.
Prospective No No Yes No No No Yes No No No No
Cohort
Registry Yes No No Yes Yes Yes No No Yes Yes Yes
Method Of 5-fold cross | 20-80 test | prospective 30:70 split split + 25-75 prospective | 3-fold 5-fold 10-fold cross
Validation validation train split | observational external split observation | cross Cross validation
+ external | study validation al study validation | validation
validation
Size Of 95961 7409 316 30966 93902 21004 14273 2638 663293 3900 2177
Validation

Dataset (N)




Improved
Outcome
Prediction

Is There
Evidence Of
Improved
Risk
Prediction?

A boosted
ensemble
algorithm
(AdaBoost)
had optimal
discriminati
on with
AUC of
0.927 (95%
CI10.923—
0.929)
compared
with AUC
0f 0.913 for
XGBoost
(95% C1
0.906—
0.919,
P=0.02),
AUC of
0.892 for
Random
Forest (95%
CI10.889—
0.896, P

The
PRAISE
score
showed
an AUC
of 0-82
(95% CI
0-78—
0-85) in
the
internal
validation
cohort
and 0-92
(0-90-
0-93) in
the
external
validation
cohort for
1-year all-
cause
death; an
AUC of
0-74
(0-70-
0-78) in
the
internal
validation
cohort
and 0-81
(0-76—
0-85) in
the
external
validation
cohort for
1-year
myocardia

The
mortality
risk
prediction
Nomogram
achieved
good
discriminatio
n for in-
hospital
mortality
(training set:
C-
statistic=0.98
7; model
calibration:
P=0.722;
validation
set: C-
statistic=0.98
4, model
calibration:
P=0.669).
Area under
the curve
(AUC)
values for
the training
and
validation
sets are
0.987 (95%
CI: 0.981—
0.994,
P=0.003)
and 0.990
(95% CI:
0.987-0.998,
P=0.007)

AUC: full
model =
0.888 (95%
CI0.877-
0.899),
reduced
model AUC
=0.880
(95% CI,
0.868—
0.892), p for
difference
0.003, NRI =
2.77%,p =
0.007)

Compared
with the
baseline
model that
uses 11
variables,
the best
model used
13 variables
and
achieved a
significantly
better arca
under the
receiver
operating
characteristi
¢ curve
(AUC) of
0.752 (95%
confidence
interval [CI]
0.749-
0.754)
versus 0.711
(95% CI
0.708—
0.714), a
significantly
better Brier
score of
0.0617
(95% CI
0.0615—
0.0618)
versus
0.0636
(95% CI
0.0634—
0.0638), and

Compared
to the
currently
used
models
for AKI,
bleeding
and death
prediction
, our
models
showed a
significant
ly higher
AUC
(range
1.6% —
5.6%),
IDI (range
4.9% —
7.2%) and
NRI
(range
0.07 —
0.61).

Neural
network
performed
similarly to
logistic reg

While the
logistic
regression
results in
this study
were
similar to
those
found in
the past
for this
clinical
domain
[25-
31,47], the
optimizati
on process
was
limited to
backward
variable
selection
using each
of the four
optimizati
on
methods.
This
limitation
may have
contribute
d to the
insensitivi
ty of the
LR
models to
the
optimizati
on
processes,

Logistic
reg and
xgradient
boost, x
gradient
boost
improved
performan
ce of
logistic reg

The AI-BR
model
accurately
predicts
bleeding
post and
accurately
predicts
bleeding
post

AUC
moderate,
group
which
dropped
data
performed
best




1
infarction;
and an
AUC of
0-70
(0-66—
0-75) in
the
internal
validation
cohort
and 0-86
(0-82—
0-89) in
the
external
validation
cohort for
1-year
major
bleeding.

a better
calibration
slope of
observed
versus
predicted
rate of 1.008
(95% CI
0.988—
1.028)
versus 1.036
(95% CI
1.015—
1.056). The
best model
also had a
significantly
wider
predictive
range
(25.3%
versus
21.6%, p <
0.001) and
was more
accurate in
stratifying
AKI risk for
patients

and may
have
biased the
findings
that SVM
models
were
superior to
LR
models




Methods
Available?

Are The
Different
Parts Of The
Prediction
Modelling
Pipeline
Available To
Others To
Allow For
Methods
Reproducibilit
y, Including:
The Statistical
Code For
‘Pre-
Processing’,
And The
Modelling
Workflow
(Including The
Methods,
Parameters,
Random
Seeds, Etc.
Utilised)?

Yes, code is
available

Yes, No
code

Yes, No
code

No

Yes, code
Not
available

Yes,

pipeline
clear but
No code

Yes, code
Not
available

Yes,

pipeline
clear but
No code

Yes, code
Not
available

No
statistical
code for
‘pre-
processing
>, but
workflow
is clear

Metrics
Clinically
Relevant?

Are The
Reported
Performance
Metrics
Relevant For
The Clinical
Context In
Which The
Model Will Be
Used?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes




Interpretabl
e By
Clinicians?

Is There
Evidence That
Clinicians And
Patients Find
The Model
And Its
Output
(Reasonably)
Interpretable?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Results
Clinically
Justified?

Is The
Reported Gain
In Statistical
Performance
With The
MV/Ai
Algorithm
Clinically
Justified In
The Context
Of Any Trade-
Offs?

Yes

Yes

Yes

Unclear

Yes

Unclear

Unclear

Unclear

Yes

Yes

Unclear

Real World
Effectivenes
S

Is There
Evidence Of
Real World
Model
Effectiveness
In The
Proposed
Clinical
Setting?

Yes

Yes

Yes

Yes

Yes

Unclear

Yes

Yes

Yes

Yes

Cost
Effectivenes
S

Is There
Evidence Of
Cost
Effectiveness
In The
Proposed
Clinical
Setting?




Supplementary Table 8. Clinical predictors and outcomes involved in the training of different ML models.

Article
Mortazavi 2019

Rayfield 2020

Clinical predictors and outcomes included in ML models

Demographic

Pre-procedural imaging

Intervention

Intervention (time-specific)
Procedural or post-

procedural complications

Outcomes

Demographic

Demographic characteristics and medical history: Age (age > 70y, age < 70y), body mass
index (BMI < 30), chronic lung disease, chronic kidney disease (no, mild, moderate or severe),
GFR, sex, diabetes (composite, non-insulin treatment, insulin-requiring), currently receiving
dialysis, NYHA (composite, 1, 2, 3 or 4), history of cerebrovascular disease, history of
peripheral arterial disease, previous PCI, pre-procedural haemoglobin (Hb < 13g/dL, Hb >
13g/dL), pre-procedural creatinine

Pre-procedural TIMI flow grade, pre-procedural LV ejection fraction

Procedural characteristics: PCI lesion composite (1: Proximal right, mid-LAD, or proximal
circumflex, 2: Proximal LAD, 3: Left main, 0: Other), proximal LAD PCI, left main PCI,
vessel disease composite, 2-vessel or 3-vessel disease, lesion complexity, SCAI lesion class,
CAD presentation, STEMI, stenosis % before treatment)

PClI status (elective, urgent, emergency or salvage)

Cardiogenic shock (at start of PCI, within 24h, at start of PCI or within 24h, composite),
cardiac arrest within 24h, PCI status and shock (composite, 1: Salvage and shock (within 24 h
and at start of PCI), 2: Salvage or shock (within 24 h and at start of PCI), 3: Shock within 24 h
or at start of PCI, 4: Emergent procedure, 5: Urgent procedure, 6: Elective procedure),
subacute stent thrombosis

In-hospital major bleeding within 72 hours after PCI




Age, gender, recent myocardial infarction, presence of cardiogenic shock, presenting
symptoms, presence of angina, presence of acute coronary artery disease symptoms, presence
of unstable angina, presence of non-ST segment elevation myocardial infarction, other
symptoms (respiratory, abdominal, etc), Canadian Cardiovascular Society grading score for
angina, New York Heart Association classification of congestive heart failure symptoms,
presence of diabetes, presence of hypertension, body mass index, hyperlipidaemia, family
history of coronary artery disease, current smoking status, history of prior myocardial
infarction, prior PCI, prior coronary artery bypass grafting, presence of peripheral arterial
disease, cerebrovascular disease, dialysis status, history of chronic lung disease, peptic ulcer
disease, presence of cancer diagnosis, metastatic disease status, cardiac arrest within 24 hours,
pre-PCI, left ventricular ejection fraction, indication for PCI, presence of shock at the start of
PCI, thrombolytic administration, diastolic blood pressure, systolic blood pressure, heart rate,
troponin T level prior to PCI, serum creatinine prior to PCI, glomerular filtration rate, pre-PCI
haemoglobin, presence of intra-aortic balloon pump, presence of other ventricular support
devices, access site femoral, access site brachial, access site radial, left main disease >50%,
proximal left anterior descending artery stenosis >70%, middle to distal left anterior
descending >70%, right coronary artery stenosis >70%, left circumflex artery stenosis >70%,
right acute marginal artery stenosis >70%, number of diseased vessels, PCI performed on
culprit lesion, PCI performed on non-culprit lesion, PCI of chronic total occlusion performed,
number of segments treated, number of vessels treated, number of lesions treated, number of
native lesions treated, worst pre-PCI TIMI flow of treated lesions, any complex lesions treated,

presence of thrombus in the lesion, any bifurcation lesion treated, worst post-PCI TIMI flow of




Pre-procedural imaging
Intervention

Intervention (time-specific)
Procedural or post-
procedural complications

Outcomes

D’Ascenzo 2021 Demographic

treated lesion, any treated lesion <20% post-PCI stenosis, number of bare-metal stents used,
number of drug-eluting stents used, total number of stents, maximum device diameter (mm),
left main intervention performed, left anterior descending intervention performed, left
circumflex intervention performed, right coronary artery intervention performed, use of
fondaparinux, use of low-molecular-weight heparin, use of unfractionated heparin, use of
aspirin, use of bivalirudin, use of other direct thrombin inhibitor, use of glycoprotein IIb/Illa
inhibitor, use of clopidogrel, use of ticlopidine, use of prasugrel, use of ticagrelor

Any intravascular ultrasound performed, Any fractional flow reserve performed

PCI

NA

NA

Bleeding within 72h of PCI and prior to hospital discharge. Bleeding was defined according to
the National Cardiovascular Data Registry (NCDR), which considers retroperitoneal,
gastrointestinal, genitourinary, and intracranial bleeding, as well as access-site hematoma, as

bleeding events.

Clinical variables (including age, sex, diabetes, hypertension, hyperlipidaemia, peripheral
artery disease, estimated glomerular filtration rate, previous myocardial infarction, previous
percutaneous coronary intervention, previous coronary artery bypass graft, previous stroke,
previous bleeding, malignancy, ST-segment elevation myocardial infarction presentation,

haemoglobin, left ventricular ejection fraction), therapeutic variables (including treatment with




Wang 2020

Pre-procedural imaging
Intervention

Intervention (time-specific)
Procedural or post-
procedural complications

Outcomes

Demographic

Pre-procedural imaging

Intervention

Intervention (time-specific)

beta blockers, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers,
statins, oral anticoagulation, and proton pump inhibitors)

Multivessel disease and complete revascularisation

Vascular access and percutaneous coronary intervention with drug-eluting stent

NA

NA

1-year all-cause mortality, 1-year re-myocardial infarction, 1-year major bleeding

General information and history: Gender, Age, BMI, kg/m2, SBP, DBP, UAP (unstable
angina previously), Hypertension, DM, P-CVD, P-PCI, Smoking, Drinking, F-CVD (family
history of CVD), Biochemistry results: TC, mmol/L. HDL-C, mmol/L. LDL-C, mmol/L VLDL-
C, mmol/L TG, mmol/L LPa, mg/dL TB, pmol/L UB, pmol/L CB, umol/L. UA, umol/L Cr,
umol/L BUN, mmol/L eGFR, mL/min, Blood routine examinations: WBC, x109
Lymphocyte, % Neutrophil, % Plt, x109 MPV, fL. CRP, mg/LL CKMB, IU FBG, mg/L

NA

PCI + Procedure factors: FFR, IVUS, OCT, CTO, ACC/AHA TypeB2C, Left coronary artery,
Total length of stents, Number of stents, Diameter of stent >2.5 mm, Calcification, PCI without
dilation, Medications: anti-Hyper Med, Statins, anti-Plt Med, Trimetazidine, Fibrates,
Cilostazol, Warfarin, PPI, Ezetimibe

NA

NA




Gurm 2014

Procedural or post-
procedural complications

Outcomes

Demographic

Pre-procedural imaging

Intervention

Intervention (time-specific)

Periprocedural myocardial infarction (PMI) after PCI *PMI def: [PMI3: cTnl >3-fold upper
reference limit (URL); PMIS: ¢Tnl >5-fold URL]

History and risk factors (including current smoker (within 1 year), former smoker,
hypertension, dyslipidaemia, family history of premature coronary artery disease, prior
myocardial infarction, prior heart failure, prior valve surgery/procedure, prior peripheral artery
disease, prior percutaneous coronary intervention, prior coronary artery bypass graft, prior
implantable cardioverter-defibrillator, height, weight, age, currently on dialysis,
cerebrovascular disease, chronic lung disease, diabetes/diabetes therapy (diet, oral rx, insulin),
gastro-intestinal bleeding, valve disease, surgery within the prior 7 days, atrial fibrillation,
cardiac transplant, cardiac arrest), clinical presentation (including pre-operative evaluation
prior to non-cardiac surgery, cardiogenic shock within 24 hours prior to presentation, cardiac
arrest within 24 hours prior to presentation, coronary artery disease presentation, angina
classification within 2 weeks, NYHA class within 2 weeks, exercise stress test results), pre-
procedural lab values (including creatine kinase-MB, troponin I, troponin T, creatinine,
haemoglobin)

Cardiomyopathy/left ventricular systolic dysfunction, stress/imaging study performed, stress
echo imaging results, cardiac CTA performed, cardiac CTA results, coronary calcium score
NA

NA

NA




Kulkarni 2021

Procedural or post-
procedural complications

Outcomes

Demographic

Pre-procedural imaging

NA

Age, gender, race, body mass index, current smoker, diabetes, hypertension, dyslipidaemia,
diabetes therapy, chronic lung disease, chronic kidney disease, current dialysis, anaemia,
family history of CAD, past history of myocardial infarction, past history of heart failure, past
history of peripheral arterial disease, past history of valve surgery, past history of PCI, past
history of CABG, past history of cerebrovascular disease, past history of heart failure within 2
weeks, cardiogenic shock within past 24 hours, cardiac arrest within past 24 hours, NYHA
class within past 2 weeks, past history of other major surgery, time elapsed since last CABG
(days), time elapsed since last PCI, time since onset of symptoms, anginal classification within
2 weeks, cardiomyopathy or LV dysfunction, CAD presentation, insurance (medicare/medicaid
only or multiple), medications (thrombolytics, anti-anginal - beta-blockers, calcium channel
blockers, long-acting nitrates, ranolazine, other), laboratory investigations (pre-PCI CKMB,
pre-PCI Tnl, pre-PCI TnT, pre-PCI serum creatinine, pre-PCI haemoglobin), estimated
glomerular filtration rate

Stress echocardiogram, SPECT stress test, exercise stress test, stress test with CMR, coronary
calcium score, calcium score, cardiac CTA, degree of vessel stenosis (left main stem, proximal
LAD, mid/distal LAD, circumflex artery, ramus, RCA, proximal LAD graft, mid/distal LAD
graft, circumflex artery graft, RCA graft, ramus graft), dominance (left, right or co-dominant),
LV ejection fraction, number of diseased vessels, diagnostic catheterisation done, other

procedure with diagnostic catheterisation, fluoroscopy time, fluoroscopy dose, contrast volume




Gao 2020

Intervention

Intervention (time-specific)
Procedural or post-
procedural complications

Outcomes

Demographic

Pre-procedural imaging

Intervention

Intervention (time-specific)
Procedural or post-
procedural complications

Outcomes

Hospital status (outpatient, outpatient converted to inpatient or inpatient), admit source
(emergency department, transfer from another acute care facility or other), inpatient for current
episode, medications (glycoprotein IIb/Ila inhibitors, fondaparinux, low molecular weight
heparin, unfractionated heparin, aspirin, bivalirudin, clopidogrel, ticlopidine, prasugrel,
ticagrelor), number of drug-eluting stents, number of bare metal stents, minimum stent
diameter, total stent length, number of lesions, transradial access, vascular closure advice,
intra-aortic balloon pump, other mechanical ventricular support

PClI status (urgent, emergency or salvage), door to balloon time, symptom action time, time of
PCI start, day of PCI

Cardiogenic shock at start of PCI

Acute kidney injury (AKI), bleeding, stroke, death, at least one adverse outcome

Sex, Killip classification, administration of beta-blocker, ACEi/ARB, CK-MB peak

Left main coronary artery disease, grading of thrombus, TIMI classification, slow flow, syntax
score, left ventricular ejection fraction

Application of IABP

Symptom-to-door time, symptom-to-balloon time

NA

In-hospital mortality




Al’Aref 2019

Matheny 2007

Demographic

Pre-procedural imaging

Intervention

Intervention (time-specific)
Procedural or post-

procedural complications

Outcomes

Demographic

Baseline demographics and clinical characteristics (including age, gender, ethnicity body mass
index, median Canadian Cardiovascular Society class, previous PCI - 1,2, 3 or more,
cerebrovascular disease, peripheral vascular disease, heart failure, malignant ventricular
arrhythmia, COPD, diabetes mellitus, renal failure on dialysis, previous CABG, hemodynamic
stability, ST-segment elevation on ECG, time in days since onset of myocardial
ischemia/infarction),

baseline chemistry values (including serum creatinine levels)

Ejection fraction

Periprocedural therapy and equipment used, hemodynamic instability, invasive coronary
angiographic findings (including stenosis severity within coronary vasculature), day of the
week PCI was performed, and facility type

Reperfusion time intervals in acute myocardial infarction patients

Periprocedural complications and outcomes, the occurrence of postprocedural complications
was defined as the occurrence of stroke, Q-wave myocardial infarction, acute occlusion in the
target lesion or in a significant side branch, vascular injury at the access site requiring
intervention, renal failure, emergency cardiac surgery, stent thrombosis, and coronary
perforation or the need to emergently return to the catheterization laboratory for PCI.

In-hospital mortality

Age, acute heart attack, body mass index, CHF class, CHF on presentation,
creatinine >2.0mg/dL, diabetes, family history of heart disease, heart rate, history of COPD,




Huang 2018

Pre-procedural imaging
Intervention

Intervention (time-specific)
Procedural or post-
procedural complications

Outcomes

Demographic

Pre-procedural imaging

history of peripheral vascular disease, history of stroke, hyperlipidaemia, hypertension, prior
PCI

NA

Intra-aortic balloon pump (IABP)

Elective, emergent or urgent case

Shock, unstable angina

Post-procedural in-hospital mortality

Age, sex, race (White, Black or African American, Asian, American Indian or Alaskan Native,
Native Hawaiian or Pacific Islander), ethnicity (Hispanic or Latino ethnicity), current/recent
smoker, hypertension, dyslipidaemia, family history of premature CAD, prior MI, prior heart
failure, prior valve surgery/procedure, prior PCI, most recent PCI date, prior CABG, most
recent CABG date, height, weight, cerebrovascular disease, peripheral arterial disease, chronic
lung disease, diabetes mellitus, diabetes therapy, CAD presentation, anginal classification
within 2 weeks, anti-anginal medication within 2 weeks, beta blockers, calcium channel
blockers, long-acting nitrates, ranolazine, other anti-anginal agent, heart failure within 2 weeks,
cardiomyopathy or left ventricular systolic function, NYHA class within 2 weeks, pre-
procedure creatinine, pre-procedure GFR, pre-procedure haemoglobin

Stress or imaging studies (i.e. if an exercise stress test, stress echocardiogram, stress testing
with SPECT MPI, stress testing with CMR, cardiac CTA or coronary calcium scoring was

performed), pre-PCI left ventricular ejection fraction




Kuno 2021

Intervention

Intervention (time-specific)

Procedural or post-
procedural complications

Outcomes

Demographic

Pre-procedural imaging
Intervention

Intervention (time-specific)
Procedural or post-
procedural complications

Outcomes

Admit source (emergency department, transfer in from another acute care facility or other),
thrombolytics, IABP, other mechanical ventricular support

PCI status (elective, urgent, emergency or salvage), IABP timing, other mechanical ventricular
support timing

Cardiogenic shock within 24 hours, cardiac arrest within 24 hours,

Acute kidney injury (AKI)

Age, chronic kidney disease, previous heart failure, diabetes mellitus, cerebrovascular disease,
heart failure at admission, cardiogenic shock at admission, cardiopulmonary arrest at
admission, ST elevation myocardial infarction, non-ST elevation myocardial
infarction/unstable angina, pre-procedural haemoglobin (<10g/dL), >3g/dL decrease in
haemoglobin level versus relative decrease of 20% in haemoglobin

NA

Use of intra-aortic balloon bump

NA

NA

Acute kidney injury (AKI)




Reported

Section/topic # Checklist item on page #
TITLE

Title 1 | Identify the report as a systematic review, meta-analysis, or both. 1
ABSTRACT

Abstract 2 | PRISMA 2020 Abstract checklist: 3-4

Identify the report as a systematic review.
Provide an explicit statement of the main objective(s) or question(s) the review addresses.
Specify the inclusion and exclusion criteria for the review.

Specify the information sources (e.g. databases, registers) used to identify studies and the date
when each was last searched.

Specify the methods used to assess risk of bias in the included studies.
Specify the methods used to present and synthesise results.

Give the total number of included studies and participants and summarise relevant characteristics
of studies.

Present results for main outcomes, preferably indicating the number of included studies and
participants for each. If meta-analysis was done, report the summary estimate and
confidence/credible interval. If comparing groups, indicate the direction of the effect (i.e. which
group is favoured).

Provide a brief summary of the limitations of the evidence included in the review (e.g. study risk
of bias, inconsistency and imprecision).

Provide a general interpretation of the results and important implications.
Specify the primary source of funding for the review.
Provide the register name and registration number.

INTRODUCTION




Rationale 3 | Describe the rationale for the review in the context of existing knowledge. 6-7
Objectives 4 | Provide an explicit statement of the objective(s) or question(s) the review addresses. 6-7
METHODS

Eligibility criteria 5 | Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. | 7-8

Information sources 6 | Specify all databases, registers, websites, organisations, reference lists and other sources searched or 7
consulted to identify studies. Specify the date when each source was last searched or consulted.

Search strategy 7 | Present the full search strategies for all databases, registers and websites, including any filters and limits 7
used.

Selection process 8 | Specify the methods used to decide whether a study met the inclusion criteria of the review, including how | 7-8
many reviewers screened each record and each report retrieved, whether they worked independently, and if
applicable, details of automation tools used in the process.

Data collection process 9 | Specify the methods used to collect data from reports, including how many reviewers collected data from 8-9
each report, whether they worked independently, any processes for obtaining or confirming data from study
investigators, and if applicable, details of automation tools used in the process.

Data items 10 | List and define all outcomes for which data were sought. Specify whether all results that were compatible 8-9
with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if
not, the methods used to decide which results to collect.

List and define all other variables for which data were sought (e.g. participant and intervention
characteristics, funding sources). Describe any assumptions made about any missing or unclear
information.

Study risk of bias 11 | Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, | 9-10

assessment how many reviewers assessed each study and whether they worked independently, and if applicable, details
of automation tools used in the process.

Effect measures 12 | Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or 9

presentation of results.




Synthesis methods

13

Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the
study intervention characteristics and comparing against the planned groups for each synthesis

Describe any methods required to prepare the data for presentation or synthesis, such as handling of
missing summary statistics, or data conversions.

Describe any methods used to tabulate or visually display results of individual studies and syntheses.
Describe any methods used to synthesise results and provide a rationale for the choice(s). If meta-analysis
was performed, describe the model(s), method(s) to identify the presence and extent of statistical

heterogeneity, and software package(s) used.

Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup
analysis, meta-regression).

Describe any sensitivity analyses conducted to assess robustness of the synthesised results.

9-10

Reporting bias assessment

14

Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from
reporting biases).

NIL

Certainty assessment

15

Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.

NIL

RESULTS

Study selection

16

Describe the results of the search and selection process, from the number of records identified in the search
to the number of studies included in the review, ideally using a flow diagram

Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why
they were excluded.

11

Study characteristics

17

Cite each included study and present its characteristics.

11-12




Risk of bias in studies 18 | Present assessments of risk of bias for each included study. NIL
Results of individual 19 | For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) | 11-12
studies an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or
plots.
Results of syntheses 20 | For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. 11-12
Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the
summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical
heterogeneity. If comparing groups, describe the direction of the effect.
Present results of all investigations of possible causes of heterogeneity among study results.
Present results of all sensitivity analyses conducted to assess the robustness of the synthesised results.
Reporting biases 21 | Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis | NIL
assessed.
Certainty of evidence 22 | Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. 11-12
DISCUSSION
Discussion 23 | Provide a general interpretation of the results in the context of other evidence. 13-19
Discuss any limitations of the evidence included in the review.
Discuss any limitations of the review processes used.
Discuss implications of the results for practice, policy, and future research.
OTHER INFORMATION
Registration and protocol 24 | Provide registration information for the review, including register name and registration number, or state 7

that the review was not registered.




Indicate where the review protocol can be accessed, or state that a protocol was not prepared.

Describe and explain any amendments to information provided at registration or in the protocol.

and other materials

forms; data extracted from included studies; data used for all analyses; analytic code; any other materials
used in the review.

Support 25 | Describe sources of financial or non-financial support for the review, and the role of the funders or 21
sponsors in the review.

Competing interest 26 | Declare any competing interests of review authors. 21

Availability of data, code, | 27 | Report which of the following are publicly available and where they can be found: template data collection | 21

Supplementary Figure 1. PRISMA 2020 checklist.
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