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Abstract
Coronary revascularisation, either percutaneous or surgical, aims to improve coronary flow and relieve 
myocardial ischaemia. The decision-making process in patients with coronary artery disease (CAD) remains 
largely based on invasive coronary angiography (ICA), even though until recently ICA could not assess 
the functional significance of coronary artery stenoses. Invasive wire-based approaches for physiological 
evaluations were developed to properly assess the ischaemic relevance of epicardial CAD. Fractional flow 
reserve (FFR) and later, instantaneous wave-free ratio (iFR), were shown to improve clinical outcomes in 
several patient subsets when used for coronary revascularisation guidance or deferral and for procedural 
optimisation of percutaneous coronary intervention (PCI) results. Despite accumulating evidence and posi-
tive guideline recommendations, the adoption of invasive physiology has remained quite low, mainly due 
to technical and economic issues as well as to operator-resistance to change. Coronary image-based compu-
tational physiology has been recently developed, with promising results in terms of accuracy and a reduc-
tion in computational time, costs, radiation exposure and risks for the patient. Lastly, the integration of 
intracoronary imaging and physiology allows for individualised PCI treatment, aiming at complete relief 
of ischaemia through optimised morpho-functional immediate procedural results. Instead of a conventional 
state-of-the-art review, this A to Z dictionary attempts to provide a practical guide for the application of 
coronary physiology in the catheterisation laboratory, exploring several methods, their pitfalls, and useful 
tips and tricks.
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Abbreviations
ACS	 acute coronary syndrome
CABG	 coronary artery bypass grafting
CAD	 coronary artery disease
CCS	 chronic coronary syndromes
CCTA	 coronary computed tomography angiography
CFR	 coronary flow reserve
CMD	 coronary microvascular dysfunction
CT-FFR	 computed tomography-derived FFR
CT-QFR	 computed tomography-derived QFR
DS	 diameter stenosis
FFR	 fractional flow reserve
GPS	 global positioning system
ICA	 invasive coronary angiography
iFR	 instantaneous wave-free ratio
IMR	 index of microcirculatory resistance
IVUS	 intravascular ultrasound
LAD	 left anterior descending
LCx	 left circumflex
LM	 left main
MACE	 major adverse cardiac events
MB	 main branch (for bifurcation stenosis)
MI	 myocardial infarction
MVO	 microvascular obstruction
NHPR	 non-hyperaemic pressure ratio
OCT	 optical coherence tomography
OFR	 optical flow ratio
OMT	 optimal medical therapy
PCI	 percutaneous coronary intervention
PPGindex	hyperaemic pullback pressure gradients index
PW	 pressure wire
QFR	 quantitative flow ratio
RCT	 randomised clinical trial
SB	 side branch
TAVI	 transcatheter aortic valve implantation
UFR	 ultrasonic flow ratio

Introduction
Instead of a  conventional state-of-the-art review, this A to Z dic-
tionary attempts to provide a practical guide for the application of 
coronary physiology in the catheterisation laboratory (cath lab), 
exploring several methods, their pitfalls, and useful tips and tricks. 
Multiple illustrated summaries seek to conduct the interventional 
cardiologist from the cornerstone of coronary physiology towards 
recent innovations and augmented reality, attempting to highlight 
the essential contributions of physiology-based diagnoses and guid-
ance for the personalised management of CAD in the real world.

The format of this review is somewhat unusual, unusual in the 
medical field at least. There are indeed very successful dictionary 
collections about literature, art, sport and philosophy. Similar to 
those, this article is a collection of short pieces classified in alpha-
betical order, without a linear structure. The review statements are 
understandable as standalone abstracts and the reader is referenced 

to connected sections in order to link different concepts with each 
other (for instance: See  Grey zone). Importantly, much like the 
capricious “Encyclopaedia of Everything and Nothing”, contribu-
tions are not intended to be comprehensive or consensual but rather 
short essays of a subjective nature providing, at times, opinionated 
viewpoints on the matter. The authors have also decided to priori-
tise many unique contributions and important recent advances in 
research from the East, namely China, Japan and the Republic of 
Korea. According to our knowledge, this is the first “state-of-the-
art medical review” conceptualised as a personal viewpoint in the 
format of an “A to Z dictionary”.

Angiography
Invasive coronary angiography (ICA) is a minimally invasive pro-
cedure that, through the injection of a  radio-opaque dye and use 
of an X-ray machine, creates a beating lumenogram of the epicar-
dial coronary tree, allowing the identification of narrowings (or 
stenoses) potentially responsible for nutrient flow reduction and 
myocardial ischaemia in patients with CAD. A 50% diameter ste-
nosis (DS) is used as the anatomically significant cut-off to guide 
treatment choices between medical treatment and revascularisa-
tion. Visual stenosis estimation is inaccurate and poorly repro-
ducible, especially when compared to stenosis-specific functional 
assessment by fractional flow reserve (FFR) and pressure wires 
(PW)1. Indeed, FFR is preserved in 65% of 50-70% DS by angiog-
raphy2. New computational models have been developed to derive 
the functional significance of a given stenosis without the use of 
a dedicated PW3. However, ICA with its high spatial (up to 1 mm) 
and temporal (up to 30 frames/sec) resolution remains the global 
positioning system (GPS) for the anatomic diagnosis of coronary 
artery disease (CAD). Its fusion with physiology and/or intracoro-
nary imaging allows the coregistration of anatomy and physiology.
See  Imaging, QFR, Virtual PCI

Acute coronary syndromes
Acute coronary syndromes (ACS) represent the clinical correlates 
of a  sudden reduction of the blood supply to the heart, causing 
myocardial infarction (MI) or unstable angina. ACS patients often 
present with bystander multivessel CAD (~50%)4.

CULPRIT STENOSIS
The epicardial culprit of MI is most often readily identified on 
the ICA from clinical symptoms, electrocardiographic changes and 
wall motion abnormalities. Likewise, in non-ST-segment elevation 
MI, the role of physiological assessment of the culprit lesion is 
limited. Imaging the underlining mechanisms (e.g., plaque rupture, 
dissection, erosion, eruptive calcific nodules, intraplaque haemor-
rhage) may require intracoronary imaging.

Permanent or reversible microvascular impairment is a  com-
mon consequence of ST-segment elevation MI, through micro-
vascular obstruction (MVO) and intramyocardial haemorrhage 
caused by prolonged ischaemia, inflammation, endothelial dys-
function, oedema, or ischaemia-reperfusion damage. The index of 
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microcirculatory resistance (IMR) is related to the extent of MVO, 
and a post-percutaneous coronary intervention (PCI) IMR ≥40 is 
a predictor of poor outcome5.

The reduced vasodilatory capacity and hyperaemic response sig-
nificantly affect the physiological assessment of the infarct-related 
artery in the acute phase. At follow-up, the hyperaemic response 
may increase again and FFR may decrease, with no change in the 
epicardial stenosis significance, whereas resting indices may be 
less affected6.

NON-CULPRIT STENOSIS
Recent evidence in support of physiology-guided revascularisa-
tion of intermediate non-culprit lesions in patients presenting with 
ACS is either positive or neutral. Although its use is supported 
by randomised clinical trials (RCTs) when compared with culprit-
only treatment7,8, it remains debatable whether a “complete” FFR-
guided strategy improves clinical outcomes over angiographic 
guidance. The deferral of non-flow-limiting, non-culprit steno-
sis is associated with higher 1-year major adverse cardiac event 
(MACE) rates than for chronic coronary syndromes (CCS)9. The 
most recent FLOWER-MI trial failed to show a significant benefit 
of FFR-guided complete revascularisation over angiographic guid-
ance in terms of death, MI or urgent revascularisation at 1 year10.

The main factors limiting the applicability of physiological 
guidance in the setting of ACS are listed below and in Figure 1:

	– Plaque vulnerability of non-culprit lesions, which increases the 
risk of later events in spite of non-flow-limiting obstruction11-14.

	– Altered haemodynamic and microcirculatory status causing 
underestimation of functional stenosis significance15,16.

See  Microvascular dysfunction

Bifurcations
When clinically indicated, there are specific requirements for the 
functional investigation of a  bifurcation lesion to avoid meas-
urement errors. Before intervention, functional testing can be 
performed on the main vessel (MV) or, in the case of pure SB 
stenosis (Medina 0,0,1), on the side branch (SB). During provi-
sional stenting across the SB, a  jailed SB evaluation should be 
considered in case of ostial “pinching”, in order to assess the need 
for additional SB intervention (Figure 2)17. Periprocedural normal 
FFR or instantaneous wave-free ratio (iFR) values in a  jailed SB 
have been associated with good functional results at follow-up, 
supporting the adoption of conservative strategies18,19. Overall, 
a jailed SB functional evaluation allows a reduction in the rates of 
SB stenting during provisional SB treatment20.

Recently, the Murray’s law-based quantitative flow ratio 
(μQFR) has been developed to overcome the impact of linear ves-
sel tapering (Figure 3), previously a  limitation of computational 
QFR in bifurcations stenoses21.
See  Left Main, QFR

Plaque vulnerability

Prospect I
(n=697)

MACE
A

Predictors PPV NPV

Prospect II
(n=898)

CLIMA
(n=1,003)
~50% ACS

11.6% (3 years)
Mild stenosis at

baseline (DS 30%)
8% (4 years)

Negative FFR at
baseline

3.7% (1 year)

17%

10%

19%

98%

95%

97%

TCFA, PB ≥70%
MLA <4.0 mm2

Max LCBI4mm ≥
324.7, PB ≥70%
MLA <40.0 mm2

FCT <75 µm, lipidic
arc >180°, 

MLA < 3.5 mm2, 
macrophages

Microvascular dysfunction

Failure to achieve maximal hyperaemia

B
• Rise in resting flow pressure
• Enhanced sympathetic drive
• Blunted coronary vasodilatation
• Post-occlusive hyperaemia
• Myocardial necrosis, haemorrhagic microvascular injury

NC-lesion

Culprit MVO

Acute phase
FFR CFR IMR NHPR =

30 days
CFR IMRFFR NHPR =

~15% lesion reclassification

Figure 1. Coronary physiology and non-culprit lesions of acute coronary syndromes: potential pitfalls. Potential scenarios affecting the 
reliability of invasive physiological assessment of non-culprit lesions in ACS: A) residual non-flow-limiting high-risk vulnerable plaques; 
B) microvascular impairment and blunted vasodilatory ability leading to reduced hyperaemic coronary flow. ACS: acute coronary syndrome; 
CCS: chronic coronary syndrome; CFR: coronary flow reserve; DS: diameter stenosis; FCT: fibrous cap thickness; FFR: fractional flow 
reserve; IMR: index of microcirculatory resistance; LCBI: lipid-core burden index; MACE: major adverse cardiac events; MLA: minimal 
lumen area; MVO: microvascular obstruction; NC: non-culprit; NHPR: non-hyperaemic pressure ratios; NPV: negative predictive value; 
PB: plaque burden; PPV: positive predictive value; TCFA: thin-cap fibroatheroma
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Ostial SB focal angiographic “pinching”

MVSB

Thrombus, plaque debris or vessel wall
oedema?

SB stenting after provisional SB treatment

FFR >0.80

NHPR >0.89

FFR ≤0.80

NHPR ≤0.89

Good result,
no further 

treatment needed

Ostial SB balloon
inflation/POT 

 
SB stenting

Figure 2. Provisional bifurcation stenting: jailed side branch functional assessment. Following SB provisional stenting the functional 
evaluation of the jailed side branch should be considered in case of ostial SB “pinching”. In case of FFR >0.80/NHPR >0.89, further SB 
treatment is not recommended, while in case of abnormal values, ostial SB balloon inflation, POT and eventual SB stenting are suggested. 
FFR: fractional flow reserve; MV: main vessel; NHPR: non-hyperaemic pressure ratios; POT: proximal optimisation technique; SB: side 
branch

Figure 3. Representative examples of μQFR computation. Upper panels show right (A) and left anterior descending (B) coronary artery 
disease. The lumen contours and side branches of the target vessels are automatically delineated and superimposed on the angiographic 
images. A step-down reference diameter function is reconstructed based on Murray’s bifurcation fractal law and used for μQFR computation. 
The lower panels provide a virtual point-by-point physiologic mapping of the target vessel. DN: distal normal; LAD: left anterior descending 
artery; LM: left main; PN: proximal normal; QFR: quantitative flow ratio; μQFR: Murray’s law-based QFR; RCA: right coronary artery.
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CABG
Coronary artery bypass grafting (CABG) is an invasive procedure 
that supplies extra blood flow to the heart in patients with exten-
sive CAD via surgical implantation of additional conduits.

Whilst observational studies have shown a  significant correla-
tion between preoperative FFR and graft patency at follow-up, 
RCTs have failed to confirm such findings22,23. The FARGO and 
the GRAFFITI RCTs, comparing FFR- and angio-guided surgi-
cal strategies, failed to demonstrate improved 6-12 month graft 
patency nor advantages in terms of clinical events22. In GRAFFITI, 
FFR-guidance allowed a simplification of the surgical intervention 
in up to 50% of patients, by reducing the number of anastomo-
ses and by increasing off-pump grafting and minimally invasive 
surgery22,24.

The role of physiological evaluation after CABG is limited. The 
early post-operative resistance and hyperaemic pressure drop of the 
left internal mammary appear significantly higher than that of the 
right or the saphenous vein grafts25. When both native and grafted 
vessels are patent but diseased, the PW sensor should be placed 
distally to the anastomosis (either through a native or bypass con-
duit). With FFR <0.75, further revascularisation is needed, prefer-
ably on the native vessel. With FFR >0.80, no invasive treatment 
is needed26,27. Image-based computational functional models have 
not been fully validated in CABG patients.
See  Multivessel disease, Trials (FAME 3)

Chronic coronary syndromes
In CCS, coronary flow reserve (CFR) impacts on the patient’s 
exertional tolerance and symptoms of angina or dyspnoea. Several 
RCTs have outlined how coronary flow restoration and myocar-
dial revascularisation improve anginal symptoms more effectively 
than optimal medical therapy (OMT)28. However, the ORBITA 
trial raised doubts about the mechanisms of symptomatic improve-
ment, illustrating the significant role of a placebo effect29. In the 
large ISCHEMIA trial, a clinically relevant improvement in symp-
toms at 3-year follow-up was demonstrated, a  time point when 
the placebo effect should be exhausted30. Even in ORBITA, PCI 
patients with abnormal invasive physiology experienced higher 
freedom from angina at follow-up31. In addition to symptomatic 
relief, FFR-guided PCI in CCS improves clinical outcomes, espe-
cially reducing the risk of spontaneous MI in comparison to OMT 
alone32. The net benefit of revascularisation depends on the risk 
balance: at higher FFR values, already low adverse event rates 
cannot be further improved and deferral appears to be safer33. 
In the lower range of FFR values, the incidence of MI and car-
diac death increases and the benefit of revascularisation becomes 
apparent, as long as the procedural risk is low34.
See  Guidelines

CT-derived physiology
CT-FFR
Computed tomography-derived FFR (CT-FFR) is based on the 
integration of a  3-dimensional anatomical reconstruction of the 

coronary tree and computational fluid dynamics. CT-FFR was 
developed to overcome the low specificity of coronary com-
puted tomography angiography (CCTA)35. CT-FFR demonstrated 
a  higher positive predictive value (65%) compared to CCTA 
(40%) in the HeartFlowNXT trial36. In the PACIFIC study37, hav-
ing FFR as the standard reference, diagnostic metrics were supe-
rior to other non-invasive tests (CCTA, myocardial perfusion 
scintigraphy and positron-emission tomography). CT-FFR allowed 
for the reallocation of patient management to OMT or revascu-
larisation in 36% of patients in the FFRCT-RIPCORD study38. In 
a  retrospective analysis of the SYNTAX II registry39 and in the 
prospective SYNTAX III Revolution RCT, CT-FFR proved to be 
an accurate tool in assessing the stenosis significance in patients 
with 3-vessel disease, showing an excellent agreement on clinical 
decisions (which segments needed to be revascularised) and treat-
ment choices (surgery or PCI)40. In the near future, CT-FFR may 
become the new gatekeeper to invasive interventions, with the aim 
of reducing costs, radiation exposure and adverse events.

CT-QFR
Computed tomography-derived QFR (CT-QFR) is a  novel non-
invasive physiology index that applies QFR computational 
algorithms to CCTA. CT-QFR showed better accuracy than scin-
tigraphy and magnetic resonance41. The advantages of CT-QFR 
(over CT-FFR) are the fast analysis time and the inclusion of distal 
vessels down to 1.5 mm42. A case example is provided in Figure 4.
See  QFR

Discordances
FFR and non-hyperaemic pressure ratios (NHPR) disagree in 
defining the physiological significance of coronary stenoses in up 
to ~20% of cases43,44. Several factors have been associated with 
FFR/NHPR discordances, including lesion location - more often 
in the left anterior descending (LAD) than other vessels - age, 
multivessel disease, non-ST-segment elevation MI, smoking and 
hypertension44. The physiological phenotypic pattern of epicardial 
CAD seems to have a crucial impact on FFR/NHPR discordances 
(Figure 5). Diffuse disease predominantly causes friction losses 
and abnormal NHPR (with preserved FFR) while focal disease 
predominantly causes separation losses and abnormal FFR (with 
preserved NHPR)43,45. Although no clinical outcome–related data 
provide a definition for the optimal treatment strategy in case of 
FFR/NHPR discordance, PW-pullback may offer a potential solu-
tion by offering individualised management targeted on the physi-
ological disease phenotype.
See  Grey zone, Patterns of epicardial atherosclerosis

Fractional flow reserve
FFR expresses the maximal achievable blood flow to a  myocar-
dial territory in the presence of a  stenosis, in the form of a  ratio 
to the maximum achievable flow in the absence of stenosis. FFR 
is calculated as the ratio of 2 pressures. During maximal hyperae-
mia, coronary flow and coronary pressure (Pd/Pa) achieve a linear 
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correlation, as coronary resistance is kept stable and minimal. By 
translating coronary flow into a pressure ratio, FFR becomes inde-
pendent of haemodynamic conditions46. However, FFR is influ-
enced by the size of the downstream myocardial flow distribution 
volume and by the presence of collaterals47. Indeed, the larger the 
amount of “viable” myocardial mass perfused, the more the hyper-
aemic flow increases and, thus, the higher the pressure gradient 
(the lower the FFR) for any given stenosis (Figure 6).
See  Grey zone, Normal values, Tips and Tricks, Trials (FAME)

Grey zone
FFR-validated ischaemic (<0.75; revascularisation justified) and 
non-ischaemic (>0.80; PCI deferral) thresholds allow stenosis- 
specific clinical decision-making. FFR values between 0.76 and 
0.81, seen in fewer than 10% of cases, are sometimes consid-
ered the “grey zone” with an uncertain diagnostic value. Different 

cut-off values inside the grey zone have been proposed for dif-
ferent subsets (i.e., left main, diabetes, MI, multivessel disease, 
heart failure) but, to date, consensus is lacking47. Only observa-
tional studies have compared deferral and revascularisation in 
“grey-zone” cases. The net clinical benefit of revascularisation 
over medical treatment increases as the FFR values decrease, with 
a sharp continuum of risk below the 0.80 threshold34,48. In border-
line cases, individualised care based on good clinical judgement 
should consider symptoms, results of non-invasive tests when 
available, adherence to OMT, procedural risks as well as the phys-
iological pattern of CAD47.
See  Chronic coronary syndromes, Patterns of epicardial atherosclerosis

Guidelines
According to the National Institute for Health and Care Excellence 
guidelines, patients with CCS should be managed medically by 
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Figure 4. Computed tomography-derived quantitative flow ratio. The framework of CT-QFR computation includes: A) lumen contour and 
coronary tree automatic reconstruction and CT-QFR computation; B) patient-specific virtual hyperaemic flow estimation; C) QFR 
computational fluid dynamics equations. CT: computed tomography; HFV: hyperaemic flow velocity; LM: left main; QFR: quantitative flow 
ratio; RCA: right coronary artery; RFV: resting flow velocity. Adapted with permission from Li et al42.
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Focal lesion

∆P through whirling and
disordered flow motion

High hyperaemic flow velocity

FFR+/CFR−  FFR+/iFR−  QFR+/iFR−

FFR+/iFR+ PCI effective to
improve myocardial ischaemia

and clinical outcomes

In case of discordance PCI
should be considered

Serial stenoses

Crosstalk during hyperaemia

Risk of FFR underestimation

Accurate PW-pullback
assessment

Post-PCI reassessment to spot
significant residual gradient

Mixed pattern

Combination of focal and diffuse
characteristics

Associated with suboptimal
post-PCI physiological

assessment

Consider conservative
management with OMT and

close follow-up

Diffuse disease

∆P through viscous friction

Low hyperaemic flow velocity

FFR−/CFR+  FFR−/iFR+  QFR−/iFR+

Benefit of PCI is doubful

OMT or CABG preferred

Figure 5. Physiological patterns of epicardial atherosclerosis: pitfalls and clinical relevance. PW-based and angio-derived indices allow the 
reconstruction of a point-by-point physiological map along the diseased coronary artery. The physiological pattern is relevant for the 
appropriate CAD management. CABG: coronary artery bypass grafting; CFR: coronary flow reserve; FFR: fractional flow reserve; 
iFR: instantaneous wave-free ratio; OMT: optimal medical therapy; PCI: percutaneous coronary intervention; PW: pressure wire; 
QFR: quantitative flow ratio; ΔP: change in pressure

69% of maximum
blood flow to
myocardium

A B C

Normal
myocardium

POST-PCI 0.90
maximum blood

flow    30%

FFR

NHPR

FFR

NHPR

Scar

Chronic total
occlusion with

collaterals
from LAD

Figure 6. Impact of the amount of supplied myocardial mass on invasive physiology assessment. The larger the amount of “viable” myocardial 
mass perfused, the higher the pressure gradient for any given stenosis: A) in case of normal myocardium, an epicardial stenosis on the 
proximal LAD has a different haemodynamic relevance compared to the second marginal branch, despite superimposable angiographic DS 
and OCT derived MLA; B) after a myocardial infarction with necrosis the amount of viable myocardial mass is reduced and the same stenosis 
yields a lower haemodynamic relevance; C) conversely, in the case of a collateral-donor vessel, the amount of subtended myocardial mass is 
larger and the pressure gradient higher. DS: diameter stenosis; FFR: fractional flow reserve; iPa: instantaneous aortic pressure; 
iPd: instantaneous distal pressure; LAD: left anterior descending; MLA: minimal lumen area; NHPR: non-hyperaemic pressure ratios; 
OCT: optical coherence tomography; Pa: aortic pressure; Pd: distal pressure; PCI: percutaneous coronary intervention; QCA: quantitative 
coronary angiography

default. In case of uncontrolled symptoms, ICA to guide further treat-
ment strategy should be considered, while additional invasive func-
tional testing may be required for evaluation of angiographic findings 
and tailored treatment decisions. In patients with CCS and FFR 
<0.80, outcomes are better for FFR-guided PCI than for OMT alone49.

European and American guidelines state that in case of 
angina or angina equivalent, without documented ischaemia 
and angiographically intermediate stenoses, the use of FFR or 
iFR is recommended for risk stratification and to proceed with 
revascularisation28,50.
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Several studies have underlined the cost-effectiveness of FFR 
measurement in the cath lab, showing that FFR-guided PCI com-
pared to angiography portends risk reduction and improved health, 
while cost is reduced51. The technology qualifies as “disruptive”: 
better outcomes at lower cost.

The adoption of physiological guidance for revascularisation in 
clinical practice is heterogeneous and globally low (~20%), due to 
technical and economic issues, as well as to resistance to change, 
explaining why decisions remain largely driven by angiography 
alone52. New PW- and adenosine-free (NHPR) alternatives to FFR 
were expected to increase the adoption of invasive physiology in 
a  real-world decision-making process. However, according to the 
ISIS 2 survey, the perceived need for invasive physiology remains 
low, even when facing stenoses of intermediate angiographic sever-
ity. As a  result, decisions have remained based purely on angiog-
raphy alone in more than 60% of cases. Of these, decisions were 
discordant with functional assessment in up to 40% of the cases, 
mainly resulting in overtreatment (i.e., PCI in spite of preserved 
FFR)53.
See  Chronic coronary syndromes, Trials

Haemodynamic variables
Haemodynamic conditions of the patient are prone to variation 
during interventional procedures, with sudden changes in blood 
pressure and heart rate. The simultaneous measurement of aortic 

and distal pressures, as well as the ability of the microcirculation 
to vasodilate to the same extent, allows FFR measurements to be 
reproducible over a wide range of conditions47,54. However, at heart 
rates >110 bpm, FFR may be underestimated55. The NHPR seems 
to be influenced by haemodynamic changes in a similar way56.

Systemic conditions that increase resting cardiac output and/or 
coronary flow (i.e., anaemia, sepsis, hyperthyroidism, myelopro-
liferative disorders, arteriovenous fistula, chronic kidney disease, 
liver cirrhosis, and Paget’s disease) may decrease NHPR values, 
without affecting hyperaemia, and consequently have no signifi-
cant effect on FFR57,58.

Increased left ventricular end-diastolic pressure reflected in 
increased central venous pressures is linearly related to FFR/
NHPR values. Coronary microvascular dysfunction (CMD) and 
blunted vasodilatory ability during hyperaemia will result in 
a  falsely increased FFR. Increased resting end-diastolic pressure 
may result in underestimated NHPR values59. In daily practice, 
the clinical relevance of these observations seems negligible, with 
less than 10% reclassification60. A case example is provided in 
Figure 7.
See  Microvascular dysfunction

Hyperaemia
Hyperaemia is the mechanism that allows blood flow to meet the 
metabolic needs of the heart. Pharmacologically-induced stable 

Case 1

FFR=0.82 FFR=0.77
Pv

<10% lesion
reclassification

Pa=100 mmHg
 Pd=83 mmHg

Pv=5 mmHg

Case 2
Pa=100 mmHg
 Pd=83 mmHg

Pv=25 mmHg

FFR = ———
(Pd−Pv)
(Pa−Pv)

N.B.
Cardiogenic shock or

acute heart failure

Pv

RA

RV

Pa

Pd

FFR

Figure 7. Influence of central venous pressure on fractional flow reserve measurement. An increase of central venous pressure is related to 
a progressive reduction of the FFR value: the same Pd and Pa values measured across an epicardial stenosis provide a negative FFR value in 
cases with normal Pv (Case 1) or a positive FFR value in cases with elevated Pv (Case 2). Even though normal- to moderately-increased Pv 
does not affect FFR in a clinically relevant way, FFR calculated without accounting for severely increased Pv can be significantly 
overestimated in case of acute heart failure or cardiogenic shock. FFR: fractional flow reserve; Pa: aortic pressure; Pd: distal pressure; 
Pv: venous pressure; RA: right atrium; RV: right ventricle
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maximal hyperaemia represents the cornerstone of FFR because 
minimal coronary resistance results in a linear relation between cor-
onary flow and pressure. After relief of potential vasoconstriction 
by intracoronary nitrates (200 µg), several hyperaemic agents can 
be used (Figure 8). Adenosine, administered intravenously (IV) or 
intracoronarily (IC), is most commonly used47. IV adenosine can 
be administered for minutes in a  central vein, allowing pullback 
manoeuvres in stable hyperaemic conditions, and is preferred in 
case of serial or diffuse disease and in case of FFR/NHPR discord-
ance46. In case of focal disease, IC adenosine can provide similar 
FFR values to IV administration61. Regadenoson and papaverine are 
valid alternatives to adenosine, providing a  prolonged hyperaemic 
effect (approximately 2-5 min and 1 min, respectively)62-64.
See  FFR, Tips and Tricks

iFR and NHPR
The NHPR family comprises several indices (Figure 9) that pro-
vide physiological assessments in baseline conditions in a cheaper 
and faster way and with fewer side effects than FFR. All of these 
indices report Pd/Pa ratios that differ depending on the phase of the 
cardiac cycle during which Pd/Pa ratios are measured. Outcome 
data are only available for FFR and iFR, while other NHPR indi-
ces were validated against FFR and/or iFR.

The instantaneous wave-free ratio (iFR) picks up Pd/Pa val-
ues during a  particular diastolic phase (wave-free period), when 

ADENOSINE IC

Chronotropy/dromotropy

LCA≥80 µg - RCA≥40 µg
No flush with saline/contrast medium!

       2-3 ml more than intended to
compensate for the “dead space”

of the catheter

• Quick response (5-10 sec
maximal hyperaemia)

• Short effect duration (5 sec)
          no pullback
• Transient AV block
• Chest discomfort-face flush (rare)
• Transient blood pressure drop

ADENOSINE IV

140-150 µg/kg/min
Central (gold standard)

or peripheral line

• Prolonged effect (1-2 min)
allowing hyperaemic pullback

• Safety

• Slow onset of action (2-3 min 
maximal hyperaemia)

• Chest discomfort-face flush (30-70%)
• Blood pressure drop
• Transient AV block
• Contraindication for asthma

PAPAVERINE IC

LCA 12-20 mg - RCA 8-12 mg

• Quick response (15 sec 
maximal hyperaemia)

• Prolonged effect duration (~60 sec)
allowing hyperaemic pullback

• QT interval prolongation
• Ventricular tachyarrhythmias (TdP)

REGADENOSON IV

Single bolus 400 µm

• Quick response (30 sec 
maximal hyperaemia)

• Prolonged effect duration (~2-5 min)
allowing hyperaemic pullback

• Chest pain or discomfort
• Fast or irregular heartbeat
• Nausea and sweating

cAMP

Vascular smooth muscle
relaxation

A1 A2a A2b

ADENOSINE REGADENOSON PAPAVERINE

ATP

AC

AMP

PDE-3

cAMP

SA & AV nodes

Figure 8. Hyperaemic agents compendium: mechanism of action and user manual. Posology (grey panels), advantages (green panels) and 
pitfalls/side effects (red panels). A1-A2: adenosine receptors; AC: adenylyl cyclase; AMP: adenosine monophosphate; ATP: adenosine 
triphosphate; AV: atrioventricular; cAMP: cyclic adenosine monophosphate; IC: intracoronary; IV: intravenous; LCA: left coronary artery; 
PDE-3: phosphodiesterase-3; RCA: right coronary artery; SA: sinoatrial
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Figure 9. Non-hyperaemic pressure ratios. iFR is the average Pd/Pa 
measured in the wave-free period. dPR is the average Pd/Pa along 
the whole diastole. DFR is defined as average Pd/Pa measured in 
the phase with Pa lower than mean Pa. RFR is the lowest mean 
Pd/Pa detected inside the whole cardiac cycle. DFR: diastolic 
hyperaemia-free ratio; dPR: diastolic pressure ratio; 
iFR: instantaneous wave-free ratio; Pa: aortic pressure; Pd: distal 
pressure; RFR: resting full-cycle ratio. Adapted with permissions 
from Kogame et al66.



95

Coronary physiology A to Z
A
siaIntervention 2

0
2

2
;8

:8
6

-10
9

resistance is relatively constant. Yet, iFR is sensitive to noise, wire 
drift and variations in haemodynamic conditions that may modify 
resting coronary flow, including contrast injections65,66.

Contrast FFR is the lowest mean Pd/Pa after contrast medium 
injection and, having FFR as a reference, has shown better accu-
racy than iFR or Pd/Pa67. The resting full-cycle ratio reflects the 
lowest instantaneous Pd/Pa within the entire cardiac cycle, requir-
ing at least 5 consecutive beats for proper acquisition, and allows 
both online and off-line measurement, with results superimposa-
ble to iFR (97.4% accuracy). Interestingly, resting the full-cycle 
ratio was measured in ~10% of cases outside diastole (>30% in 
the right coronary artery)68.
See  Normal values, Tips and Tricks, Trials (DEFINE-FLAIR and 

IFR-SWEDEHEART)

Imaging
Unlike ICA, intracoronary imaging techniques allow a  precise 
evaluation of the cross-sectional morphology of the arterial vessel 
wall, thereby providing insightful support for PCI planning and 
optimisation. To date, the integrated approach of either intravas-
cular ultrasound (IVUS) or optical coherence tomography (OCT) 
with wire-based physiology is often limited due to additional costs 
and procedural time. Novel models have been developed allow-
ing the physiology to be directly derived from intravascular imag-
ing acquisition through the fusion with 3-dimensional angiography 
and application of computational fluid dynamics. ICA remains the 
GPS of these acquisitions through simultaneous registration and 
point-by-point vessel reconstruction69.

To date, head-to-head comparisons between functional and 
intracoronary imaging-guided revascularisation have been sparce. 
In the hypothesis-generating single-centre FORZA trial70, OCT 
guidance was associated with a  lower incidence of the compos-
ite of MACE or significant angina at 13 months, whereas in the 
large FLAVOUR trial, IVUS- and FFR-guided PCI were associ-
ated with a  similar incidence of adverse cardiovascular events at 
24 months71.
See  OFR, QFR, UFR, Virtual PCI

Intermediate stenoses
Intermediate stenoses are those with an angiographically defined 
DS of 50-90% and unpredictable haemodynamic significance. 
Invasive physiology can identify those lesions that are haemody-
namically significant, i.e., reducing maximum achievable flow and 
exercise tolerance. FFR is considered the gold standard for the 
assessment of functional significance of intermediate lesions, with 
a  greater accuracy than exercise electrocardiography, myocardial 
perfusion scintigraphy and stress echocardiography. In patients 
with CCS, angio-guided PCI only provides appropriate manage-
ment in ~50% of cases compared to FFR, with the other ~30% 
having inappropriate PCI and ~20% having inappropriate defer-
ral72. Conservative management of lesions with preserved FFR is 
favourable, with an estimated ~1% risk of MI and cardiac death 
per year that cannot be further improved by PCI. Conversely, an 

ischaemic lesion has a ~5% per year risk of events, which can be 
reduced by revascularisation47,73.
See  Chronic coronary syndromes, Guidelines

Left main
Left main (LM) is the largest bifurcation vessel in the coronary 
tree, supplying more than 50% of the total myocardial mass and 
often presenting the left circumflex (LCx) artery as an SB. A sig-
nificant LM stenosis is associated with poor outcome. Its accurate 
evaluation by angiography is difficult, and non-invasive assess-
ment is often misleading due to “balanced ischaemia” and falsely 
normal results47. Invasive physiological assessment of LM disease 
with FFR or NHPR has been widely validated, providing evidence 
that deferred treatment according to FFR >0.80 or NHPR >0.89 is 
safe74,75. However, LM disease is rarely isolated, and often associ-
ated with concomitant LAD and/or LCx stenoses. Therefore, both 
the LAD and LCx should be assessed, including a  PW-pullback 
manoeuvre, in order to evaluate the impact of LAD/LCx dis-
ease on the LM FFR value17. Particular attention should be paid 
to the correct equalisation of proximal and distal pressures, to be 
obtained after disengaging the guiding catheter. Moreover, hyper-
aemia should be induced preferentially by IV adenosine47. A com-
prehensive illustration of the procedure is provided in Figure 10.
See  Bifurcations

Microvascular dysfunction
CMD is a  common condition that causes or worsens ischaemia 
in patients with or without obstructive epicardial CAD. The com-
bined measurement of FFR and CFR accounts for the evalua-
tion of CMD with frequent (up to 40%) cases of disagreement. 
Whereas the management of FFR abnormal/CFR abnormal (revas-
cularisation), FFR normal/CFR normal and FFR normal/CFR 
abnormal (medical therapy) has been established, the prognostic 
relevance and the best management of patients with discordant 
FFR ≤0.80 (abnormal) and CFR ≥2.0 (normal) remains undefined. 
It was suggested that preserved CFR may avoid vessel failure and 
allow deferral of PCI, but this strategy has provided suboptimal 
results in the DEFINE-FLOW study76. Direct evaluation of CMD 
by the index of microcirculatory resistance (IMR) might allow 
improved risk stratification and inform targeted medical therapy 
with improved symptomatic control77.

Of note, CMD affects FFR measurements through blunted 
hyperaemic flow response, leading to an underestimation of ste-
nosis significance in conditions such as ACS and aortic stenosis.
See  Acute coronary syndromes, TAVI, Thermodilution, Transplant 

vasculopathy

Multivessel disease
The evidence in support of FFR-guidance in the setting of mul-
tivessel disease is still a matter of debate, whilst CABG remains 
the treatment of choice for 3-vessel CAD with moderate-to-severe 
anatomic complexity, high disease burden and in the presence of 
diabetes78-80. FFR-guided PCI with new-generation drug-eluting 
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stents (DES) promised far better outcomes with fewer stent 
implants81-83. The FAME 3 trial was conceived against this back-
ground but failed to prove non-inferiority of FFR-guided PCI 
compared to CABG guided by ICA. The FUTURE trial even 
failed to show the benefit of FFR over standard ICA as the gate-
keeper for revascularisation decisions (CABG and PCI) in multi-
vessel CAD84. Several trial limitations should be acknowledged, 
such as premature study termination due to safety issues (not con-
firmed at the 12-month analysis) and the inclusion of a heteroge-
neous patient population (up to 50% with ACS, high SYNTAX 
score)84. A comprehensive illustration is provided in Figure 11.
See  Trials (FAME)

Normal range and values
Completely normal epicardial coronary arteries show no decrease 
in pressure and flow during maximal hyperaemia and the “nor-
mal” FFR is 1.085. Progressive obstacles to maximal coronary flow 
and pressure increase with plaque burden and, therefore, reduced 
epicardial coronary conductance show a continuum with advanced 
age. As such, a dichotomic assessment of FFR and NHPR appears 
trivial. FFR showed high accuracy in detecting haemodynamically 
significant stenoses, and FFR <0.75 predicts inducible ischaemia 
with 100% specificity, whereas FFR >0.80 excludes it with a spec-
ificity of 90%86,87. FFR values between 0.76 and 0.81, seen in less 
than 10% of cases, are sometimes considered as a  “grey zone” 
with an uncertain diagnostic value. The NHPR-validated cut-off 
for significance is ≤0.89, while the ≤0.80 threshold is recom-
mended for angio-based and other imaging-derived FFR indexes. 
Contrast FFR has a cut-off for significance at 0.83, while values 
above 0.88 relate to a  safe deferral. The best target for optimal 
post-PCI FFR/iFR has not been prospectively determined. A com-
prehensive illustration is provided in Figure 12.
See  Grey zone

OFR
Optical flow ratio (OFR; OctPlus, Pulse Medical Technology Inc.) 
is a  computational index that integrates OCT and angio-derived 
physiology, with no need for a  dedicated PW or hyperaemia. 
Lumen contours and 3-dimensional reconstruction are automati-
cally delineated from the OCT image pullback and computational 
fluid dynamics are applied. The fractal law is used to correct the 
natural change in lumen size due to the step-down phenomenon 
allowing a  reliable assessment in case of bifurcations. OFR has 
been validated against invasive wire-based FFR in de novo lesions 
and in-stent restenoses, showing high diagnostic accuracy (>90%), 
with negligible intra- and inter-observer variability and low com-
putation time (55±23 seconds)88,89. In the setting of virtual PCI 
and augmented reality for procedural planning, simulated residual 
OFR and post-PCI OFR showed good accuracy (>84%) in predict-
ing optimal post-PCI FFR ≤0.9090. To date, a single OCT catheter 
provides appealing morpho-functional information for PCI plan-
ning, guidance and optimisation, especially in cases of complex, 
diffuse or serial stenoses (Figure 13).
See  Virtual PCI

Patterns of epicardial atherosclerosis
An accurate PW-pullback allows definition of the point-by-point 
distribution of the physiological map along the diseased coronary 
artery, either at rest or during prolonged hyperaemia91,92. A focal 
pattern of disease is defined as an abrupt pressure drop localised 
in a  relatively short vessel segment (18-20 mm or less), whereas 
diffuse disease is defined as a  gradual reduction of the pressure 
gradient from distal to proximal, without a  clearly identifiable 
focal pressure drop93. The hyperaemic pullback pressure gradi-
ents index (PPGindex) is derived from FFR-pullback and aims 
to provide a  quantitative estimation of the physiological pheno-
type, rather than relying on a  qualitative and operator-dependent 

Side branch

Left main

FFR ≤0.80 NHPR ≤0.89

FFR NHPR

FFR/NHPR reflect
proximal MV and SB

disease

Not reliable for the
PCI strategy decision
(one vs two stents)

Main vessel
FFR/NHPR should
be considered to

confirm significant
ischaemic drop

PW-assessment LM-LAD and LM-LCx
Lowest value between LAD and LCx
should be considered

PW-assessment LM-LCx
LM significance should be
assessed in LCx (healthy)

PW-pullback
1. Treat the most severe lesion
2. Reassess through the
    stented vessel

A Left mainB Left mainC

LCx LAD LCx LAD LCx LAD

Figure 10. Tips and tricks for invasive physiology in left main bifurcation. Three scenarios are presented: isolated LM bifurcation disease (A); 
concomitant LM bifurcation and LAD disease (B); concomitant LM bifurcation, LAD and LCx disease (C). FFR: fractional flow reserve; 
LAD: left anterior descending; LCx: left circumflex; LM: left main; MV: main vessel; NHPR: non-hyperaemic pressure ratio; 
PCI: percutaneous coronary intervention; PW: pressure wire; SB: side branch
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• Reclassifies >30% of cases
• Converts patients from higher to lower risk
• Better discriminates risk for death/MI

0.60 1.000.800.75
Optimal threshold

High FFR valueLow FFR value

Revascularisation = MACERevascularisation = MACE

Physiology

1-vessel disease

Functional SYNTAX
score
14.0

Angiography

3-vessel disease

SYNTAX score 1

28.0

Figure 11. Invasive physiology for the guidance of multivessel disease revascularisation. The use of invasive physiology in case of multivessel 
disease allows a reclassification of lesion severity, reducing the number of haemodynamically significant lesions. A patient with angiographic 
3-vessel disease actually presents a haemodynamically significant single-vessel disease (LAD) at the FFR evaluation, reducing the SYNTAX 
score from 28 to 14. FFR: fractional flow reserve; iPa: instantaneous aortic pressure; iPd: instantaneous distal pressure; LAD: left anterior 
descending; MACE: major adverse cardiac events; MI: myocardial infarction; Pa: aortic pressure; Pd: distal pressure

0.80 0.890.89 0.89 0.89 0.89 0.83 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

FFRCTFFRangio µQFRvFFRcFFRFiltered
Pd/PaDFR RFRdPRiFRFFR QFRCTQFRUFRQFR

Invasive Non-invasive
Pressure-wire Intracoronary

imaging Angiography CT-angiography

Cut-off

Hyperaemic agents

Patient’s
discomfort

Procedural time

Costs

Pullback analysis

Coregistration

Virtual-PCI
guidance

Learning curve

Outcome RCT

Figure 12. Coronary physiology in the catheterisation laboratory, the complete “arsenal”: pros and cons. The different physiology indices are 
classified according to a traffic light colour-code, from strength (green) to weakness (red) or intermediate grading (orange). µQFR: Murray’s 
law-based quantitative flow ratio; CCTA: coronary computed tomography angiography; cFFR: contrast FFR; DFR: diastolic hyperaemia-
free ratio; DPR: diastolic pressure ratio; FFR: fractional flow reserve; FFRangio: fractional flow reserve angio; FFRCT: computed tomography-
derived FFR; iFR: instantaneous wave-free ratio; OFR: optical flow ratio; PCI: percutaneous coronary intervention; 
Pd/Pa: resting distal coronary pressure to aortic pressure ratio; QFR: quantitative flow ratio; QFRCT: computed tomography-derived QFR; 
RCT: randomised clinical trials; RFR: resting full-cycle ratio; UFR: ultrasonic flow ratio; vFFR: vessel FFR
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interpretation. It is calculated by the magnitude of pressure drop 
over 20 mm and the overall extent of functional disease, provid-
ing a  value between 0 to 1. The higher the PPGindex, the more 
focal the physiological pattern; the lower the PPGindex, the more 
diffuse the pattern91. A similar index, with analogous computation 
and values is the QFR virtual pullback index derived from ICA-
based computational QFR94. Another approach, dFFR(t)/dt, pro-
vides an instantaneous FFR gradient per unit of time. The peak 
value of dFFR(t)/dt predicts the amount of FFR change across the 
target stenosis, and, consequently, the expected FFR gain after 
PCI. The need for motorised FFR-pullback during acquisition and 
co-registration with ICA represents a  limitation to its widespread 
adoption95.

The physiological pattern of disease should influence the deci-
sion-making for appropriate CAD management. In cases of focal 
stenosis, PCI is the most effective strategy to improve myocardial 
ischaemia and clinical outcomes. Conversely, in cases of diffuse 
CAD, either OMT or CABG should be considered, in view of the 

poor results of “full-metal jacket” stenting approaches91,96. A sum-
marising illustration is provided in Figure 5.
See  Discordance, Serial stenoses

Post-PCI physiology
Suboptimal physiology (FFR <0.90) after apparently success-
ful angio-guided PCI is very common (up to 30% of cases) and 
poorly recognised. Post-PCI physiological evaluations remain 
underused in clinical practice, mainly due to technical and eco-
nomic reasons, prolonged procedural times and the need for the 
administration of hyperaemic agents when wire-based FFR is per-
formed97. LAD localisation, low baseline FFR and the presence 
of diffuse disease have been associated with an increased risk for 
suboptimal post-PCI physiological outcomes98. Combined physi-
ology and intracoronary imaging studies have identified several 
stent-related factors that cause residual intra-stent pressure gradi-
ents: geographical miss (failure to stent the full plaque length), 
stent malapposition, stent underexpansion, major edge dissection, 

Figure 13. Computation of simulated residual OFR and post-PCI OFR. A1) ICA and FFR value (*) of LAD before PCI. A2) Cross-sectional 
proximal reference (I), minimum lumen area (II-III), distal reference (IV) and 3D reconstructed artery. A3) The computed OFR along the 
vessel is presented by a virtual pressure pullback. Vessel pre-PCI OFR is 0.63, with a drop across the lesion of 0.30 and a simulated residual 
OFR of 0.93. B1) ICA and FFR (*) after PCI. B2) Cross-sectional OCT showing incomplete stent apposition and underexpansion.  
B3) Post-PCI OFR of 0.85 and virtual OFR pullback showing a diffuse in-stent pressure drop of 0.08. FFR: fractional flow reserve; 
ICA: invasive coronary angiography; LAD: left anterior descending artery; MEI: minimum expansion index; OCT: optical coherence 
tomography, OFR: optical flow ratio; PCI: percutaneous coronary intervention. Adapted with permission from Ding et al90.
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as well as in-stent plaque or thrombus prolapse99. Retrospective 
and prospective studies have suggested a  significant interaction 
between suboptimal post-PCI physiology and clinical outcomes, 
with different post-PCI target thresholds (i.e., FFR ≥0.90, iFR 
≥0.95 and QFR ≥0.90)100-103. A comprehensive illustration is pro-
vided in Figure 14.
See  Virtual PCI

QFR
The most validated angio-derived physiological index is quantita-
tive flow ratio (QFR), which computes FFR from the ICA with-
out the need for dedicated PW or hyperaemic stimuli, sharing the 
same abnormality cut-off (0.80). QFR integrates the 3-dimensional 
angiographic reconstruction of the vessel, derived from 2  angio-
graphic projections with at least 25° of difference, and coronary 
flow is estimated from frame counting. QFR can be analysed both 
online and offline, with a shorter analysis time than FFR (5.0 min 
vs 7.0 min). Moreover, QFR virtual mapping is inherently co-reg-
istered with ICA and has been validated against PW-pullback44. 
QFR accurately assesses the haemodynamic significance of cor-
onary stenoses compared with FFR and yields nearly optimal 
accuracy metrics (84% sensitivity, 88% specificity)104-107. The 
QFR-guided PCI strategy proved superior to the angio-guided one 
in the FAVOR III China, sham-controlled RCT108.

Vessel FFR is another index with benefits and disadvantages 
similar to QFR. Vessel FFR allows a  per-lesion analysis rather 
than requiring a full-length coronary evaluation. No frame count-
ing is needed and hyperaemic flow is derived from the aortic root 

pressure tracing109. FFRangio allows a full left and right simultane-
ous coronary artery 3-dimensional vessel reconstruction, based 
on 3 or more angiographic views. The epicardial and microcir-
culatory physiology is evaluated as an analogue system whose 
resistance is derived from the arterial length and diameter. In the 
FAST-FFR trial, FFRangio yielded good diagnostic accuracy com-
pared to FFR110.
See  Angiography, Normal values, Trials (FAVOR)

Serial stenoses
Physiological evaluation of serial stenoses still represents a chal-
lenging problem given the well-known crosstalk phenomenon 
(Figure 15). Since the pressure drop across a stenosis depends on 
its severity and flow, the presence of serial stenoses affects over-
all vessel haemodynamics, especially during maximal hyperaemia. 
The proximal lesion gradient (interlesion gradient) is underesti-
mated due to the erroneous increase of the Pd value; conversely, 
the reduced flow due to the proximal stenosis may falsely over-
estimate the significance of the distal lesion47,92,111. Hyperaemic 
PW-pullback represents a pragmatic solution through the identifi-
cation of the segment with the largest pressure drop, which should 
be stented first. This approach, however - advocating hyperaemia 
induction - may overestimate the lesion severity, leading to the 
treatment of non-significant stenoses92,111. In theory, NHPR and 
NHPR-pullback are less influenced by such phenomena because 
autoregulation aims at maintaining stable, normal resting coronary 
flow, which may avoid stenosis crosstalk. In cases of concomitant 
LM and either LAD or LCx disease, a potential strategy could be 
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Figure 14. Post-PCI physiology: state-of-the-art. Post-PCI physiological assessment detects suboptimal functional improvement in a large 
proportion of cases with apparently optimal angiographic results and could have a prognostic relevance in terms of vessel-oriented adverse 
events. FFR: fractional flow reserve; MACE: major adverse cardiac events; NHPR: non-hyperaemic pressure ratios; OMT: optimal medical 
therapy; PCI: percutaneous coronary intervention; QFR: quantitative flow ratio; TVR: target vessel revascularisation; VOCE: vessel-oriented 
composite endpoint
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the placement of the distal PW in a large unobstructed side branch 
in order to identify separately the pressure drop caused by the LM 
disease (the most proximal stenosis)111.

TAVI
The association of severe aortic valve stenosis with CAD, besides 
being common (25-50%)27, poses diagnostic and therapeutic chal-
lenges. The haemodynamic changes due to aortic stenosis raise 
concerns of the reliability of the hyperaemic and resting physi-
ological indices. Left ventricular hypertrophy is associated with 
interstitial fibrosis, multivessel disease and increased ventricular 
diastolic pressures. Conversely, after transcatheter aortic valve 
implantation (TAVI), an abrupt reduction in afterload and pro-
gressive regression of LV hypertrophy occurs, with progressively 
decreasing resting flow and increasing aortic pressure.

To summarise, observational studies indicate the following112-115:

	– Pre-TAVI, NHPR tends to be abnormal, while FFR tends to be 
falsely normal.

	– Post-TAVI, NHPR shows erratic individual variations, FFR 
tends to decrease (Pa increases). However, a change in the ini-
tial pre-TAVI decision to defer is rare (decision to treat post-
TAVI in <10% of the lesions).

	– At follow-up (6-12 months), NHPR may increase significantly 
with a high rate of lesion reclassification (~30%). FFR remains 
stable over time if normal at baseline (FFR >0.85) but tends to 
worsen if borderline at baseline (0.75-0.85).
A comprehensive illustration is provided in Figure 16.

See  Microcirculation dysfunction

Thermodilution
Thermodilution is an indicator-dilution method that allows the meas-
urement of cardiac output, while coronary thermodilution aims to 
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Figure 15. Serial stenoses: the cross-talk phenomenon. Coronary flow physiology is affected by the complex interplay between serial stenoses. 
The proximal lesion (1) reduces flow and pressure leading to an increase gradient across the distal lesion and FFR reduction (severity 
overestimation). Conversely the distal lesion might increase the inter-lesion pressure (S2) reducing the pressure gradient across the proximal 
one, thus leading to FFR increase (severity underestimation). FFR: fractional flow reserve; Pa: aortic pressure; Pd: distal pressure; 
Pv: venous pressure; Qn: hypothetical maximal myocardial flow without stenosis; Qs: maximal myocardial flow in the presence of stenosis. 
Adapted with permission from Pijls et al47.
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study microvascular function. CFR is the capacity of coronary flow 
to increase and is expressed as the ratio between maximum hyper-
aemic and resting flow. IMR is an indirect estimate of the microvas-
cular resistance obtained during bolus injection thermodilution116.

Continuous thermodilution measures absolute coronary flow 
(ml/min) and allows a  calculation of the total resistance of the 
myocardial distribution volume downstream from the investi-
gated coronary artery and its components, namely epicardial and 
microcirculatory resistance. Continuous thermodilution correlates 
with positron emission tomography-derived flow (ml/min/gr) and 
resistance, either with or without adenosine infusion117. A dedicated 
catheter with 4 side holes (RayFlow; Hexacath) is required in order 
to induce maximal hyperaemia during continuous saline infusion116.
See  Microvascular dysfunction

Tips and tricks
Since invasive physiology represents the cornerstone and refer-
ence standard for the physiological evaluation of coronary steno-
sis significance, any technical- or operator-related artefacts should 
be avoided by proper procedural instrumentation. After IC nitrate 
administration to avoid vasospasm, accurate equalisation, NHPR/
FFR measurements, PW-pullback and final signal drift check must 
be performed as standard procedural steps. On top of this, iFR 
coregistration superimposes the physiological map on the angio-
gram, precisely underlying the area and extent of iFR loss, and 
identifying the target for PCI (stent location, diameter and length). 
A comprehensive illustration is provided in Figure 17.
See  Hyperaemia

Transplant vasculopathy
Cardiac allograft vasculopathy due to an inflammatory fibropro-
liferative disease that diffusely affects epicardial coronary arteries 
and the microcirculation still represents the main drawback of heart 

transplantation118. Such pathological alterations affect the reliability 
of pressure-derived indices in allograft vasculopathy. Indeed, dis-
cordant normal FFR and reduced CFR have been reported because 
the increased microvascular resistance decreases the maximum 
achievable hyperaemic flow down the epicardial vessel. For this 
reason, FFR may not provide a reliable index for the revascularisa-
tion decision-making in cardiac transplant patients118,119.

Trials
FAME
The FAME I trial provided evidence on the long-term safety of 
FFR guidance for PCI in patients with multivessel CAD. Patients 
(n=1,005) were randomly assigned either to FFR-guided PCI 
(cut-off 0.80) or angio-guided PCI. The use of FFR significantly 
reduced the number of stents used per patient (p<0.001) and the 
incidence of a  composite endpoint of death, non-fatal MI, repeat 
revascularisation at 12 months (13.2% vs 18.3%; p=0.02), with 
loss of statistical significance at 24 months120 and 5 years of fol-
low-up121. Treatment deferral with a normal FFR value was safe, 
with MI and repeated revascularisation rates as low as 0.2% and 
3.2% at 2 years, respectively.

The FAME II trial tested the hypothesis that FFR-guided PCI 
in stable CAD with significant ischaemia would offer better 
results than OMT alone, reducing the need for urgent, unplanned 
revascularisation. Patients with an abnormal FFR value (≤0.80) 
were randomly assigned either to PCI (+OMT) or to OMT 
alone. The trial was halted prematurely after the enrolment of 
1,220 patients, due to a significantly higher incidence of adverse 
events in the OMT group (12.7% vs 4.3%; p<0.001), exclusively 
driven by a  higher rate of urgent, unplanned revascularisation. 
The initial sample size and the premature discontinuation of the 
study did not allow it to achieve relevant conclusions in terms of 
hard clinical endpoints82.

Pre-TAVI physiological assessment
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Figure 16. Invasive physiology assessment and aortic stenosis. Interstitial fibrosis and microvascular dysfunction due to aortic stenosis affect 
both hyperaemic and resting functional indices. A) The increase of LVEDP leads to a rise in resting coronary flow, falsely overestimating 
NHPR values, while the blunted vasodilatory ability reduces peak hyperaemic coronary flow, underestimating FFR. B) After valve 
replacement, the reduction of afterload leads to an increase of NHPR values, with negligible impact on FFR values. AVA: aortic valve area; 
FFR: fractional flow reserve; LV: left ventricular; LVEDP: left ventricular end-diastolic pressure; MG: mean gradient; NHPR: non-
hyperaemic pressure ratios; Pa: aortic pressure; Pd: distal pressure; TAVI: transcatheter aortic valve implantation
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The FAME III trial was conceived to prove non-inferiority 
of FFR-guided PCI compared to CABG in case of three-vessel 
CAD, using last-generation drug-eluting stents. The trial failed 
to meet its primary composite endpoint at 12 months (all-cause 
death, MI, stroke and revascularisation) with 10.6% for FFR-
guided PCI versus 6.9% for CABG (p for non-inferiority=0.35). 
FFR-guided PCI was associated with a lower incidence of major 
bleeding, acute kidney injury, arrhythmia, and rehospitalisa-
tion within 30 days and with a  shorter length of hospital stay. 
Additional insights on the safety and efficacy of FFR-guided PCI 
were provided when applied in the subgroup of low-risk patients 
(SYNTAX score <23)122.

DEFINE-FLAIR AND IFR-SWEDEHEART
The DEFINE-FLAIR and the iFR SWEDEHEART were two large 
RCTs that tested the non-inferiority of iFR compared to FFR in 
guiding revascularisation. Both these trials included stable CAD 
and non-culprit lesions of ACS, enrolling 2,492 and 2,037 patients, 
respectively. In both trials, iFR provided non-inferior results com-
pared to FFR in terms of MACE at 12-month follow-up (6.8% vs 
7.0%; p for non-inferiority<0.001 in DEFINE-FLAIR and 6.7% vs 
6.1%; p for non-inferiority=0.007 in iFR SWEDEHEART). More 
patients reported intraprocedural chest discomfort in cases of FFR 

use, compared to iFR123,124. Moreover, iFR resulted in increased 
deferral rates compared to FFR (45% vs 50%; p<0.01), according 
to a  pooled meta-analysis of both trials. Revascularisation defer-
ral was safe in both groups with no difference in 12-month MACE 
(4.12% vs 4.05%, respectively; p=0.60)125. Of note, long-term 
follow-up data, of particular importance in case of deferral, have 
been reported only for the iFR SWEDEHEART, showing no dif-
ference in the 5-year MACE incidence between the iFR and FFR 
groups: 21.5% and 19.9%, respectively (hazard ratio [HR] 1.09, 
95% confidence interval [CI]: 0.90-1.33)126.

FAVOR
The FAVOR (Functional Diagnostic Accuracy of Quantitative 
Flow Ratio in Online Assessment of Coronary Stenosis) Pilot, 
FAVOR II Europe-Japan and FAVOR II China studies showed that 
QFR improves the diagnostic accuracy of ICA in predicting abnor-
mal FFR values104-106.

The FAVOR III China randomised sham-controlled trial showed 
that a  QFR-guided PCI strategy is superior to an angio-guided 
one, with a significant reduction of MACE at 12-month follow-up 
(5.8% vs 8.8%; HR 0.65, 95% CI: 0.51-0.83; p=0.0004). Moreover, 
QFR permitted a change in procedural plans in more than 1 out of 
5 cases. As observed with FFR-guidance, QFR-guidance resulted 

1. Calibration Before PW insertion, setting atmospheric pressure as the zero reference

2. Wire insertion An introductory needle can be used; 300 μg of nitrate IC

3. Equalisation  - Introductory needle removal (if used) 
 - Pressure sensor advanced 1-2 mm distal to the catheter tip after saline flushing 

 2 pressures should be superimposable 
 - Ostial LM disease: equalisation with the catheter disengaged and sensor in the aorta

4. Wire positioning  - Sensor should be placed at least 2 to 3 cm/(at least 1 RVD) distal to the stenosis to 
be assessed  post-stenotic laminar flow is restored, avoiding flow eddies and 
pressure recovery 

 - Tortuosity: caution to ACCORDION effect and severity overestimation

5. NHPR determination NHPR measurement

6. Hyperaemia 
induction

ADENOSINE IV (140 μg/kg/min) - RAPISCAN IV (400 μg) 
 - Total length of recording of 1 to 4 min 
 - Allows PW-pullback manoeuvre 

ADENOSINE IC (100 μg RCA, 200 μg LCA) 
 - Guiding catheter well-engaged into the ostium, disengaged at the end of the 
injection 

 - Adenosine should not be flushed with saline/contrast medium (use 2-3 ml more 
than intended to compensate for the "dead space" of the catheter) 

 - Total length of recording less than 1 min 

PAPAVERINE (12-20 mg RCA, 8-12 mg LCA)

7. FFR determination FFR is automatically measured at the nadir of the Pd/Pa tracing

8. Pullback Useful in case of index discordance, sequential stenoses, diffuse disease, or ostial 
lesions 
 - Hyperaemic pullback / NHPR pullback - Coregistration

9. Signal drift check After the measurement pull back PW until 1 or 2 mm distal to the tip of the guiding 
catheter 

 The two measured pressures should be identical 
 If significant drift is present repeat from passage 3

Figure 17. Invasive physiology assessment in the catheterisation laboratory: a practical guide. FFR: fractional flow reserve; 
IC: intracoronary; IV: intravenous; LCA: left coronary artery; LM: left main; NHPR: non-hyperaemic pressure ratios; Pa: aortic pressure; 
Pd: distal pressure; PW: pressure wire; RCA: right coronary artery; RVD: reference vessel diameter



103

Coronary physiology A to Z
A
siaIntervention 2

0
2

2
;8

:8
6

-10
9

in a smaller number of stents implanted, a shorter procedural time 
and a lower volume of contrast use108.
See  Guidelines

UFR
Ultrasonic flow ratio (UFR) is an IVUS-derived FFR that com-
bines the morphological anatomical features of greyscale IVUS 
with functional mapping through computational fluid dynam-
ics. UFR has shown strong correlation and optimal agreement 
with invasive FFR analysis (sensitivity 92%; specificity 91%; [+] 
predictive value 96%; [–] predictive value 96%)65,127. The main 
drawback of the initial IVUS-derived FFR models was the long 
simulation time (>1 hour). Recently, UFR has shown a fast com-
putational time (~100 sec) with excellent reproducibility.
See  Virtual PCI

Virtual PCI
The concept of virtual PCI relies on the pre-PCI reconstruction of 
the physiological map of the stenosed vessel in order to achieve opti-
mal post-PCI physiology through individualised procedural plan-
ning. PW-pullback recordings allow the operator to precisely define 
the functional phenotype of the stenotic vessel and to anticipate the 
physiological effect of the fully deployed stent of selected length 
and diameter, with the help of augmented reality. For instance, iFR 
gain (iFRexp) showed a  good correlation with the observed iFR 
post-PCI128, even in cases of diffuse and multiple lesions. In the 
iFR GRADIENT registry, the iFR-assisted strategy led to a change 
in the revascularisation strategy in 1 out of 3 cases, reducing the 

number of lesions and the diseased length treated93. Similarly, QFR 
computation provided a virtual haemodynamic mapping of the coro-
nary artery that has shown excellent agreement with iFR-pullback 
as a  reference44. Moreover, pre-PCI QFR demonstrated excellent 
accuracy in predicting post-PCI results, with both estimated and 
measured residual-QFR being well correlated with actual post-PCI 
FFR, and adverse clinical events at follow-up129,130.

To precisely allocate the physiological blockages on the ana-
tomical angiographic map along the vessel, a  system of angiog-
raphy-physiology coregistration has been developed (Figure 18). 
Such innovation has provided promising results for PCI planning 
and guidance, especially with diffuse disease or multiple stenoses 
in series131. A case example of virtual PCI is provided in Figure 19.
See  Post-PCI physiology

Wires and catheters
Any size of 6 Fr or larger guiding catheter can be used for phys-
iological assessment. The aortic waveform should display the 
dicrotic notch precisely. Size mismatch between the catheter and 
coronary ostium may impact on coronary flow, preventing max-
imal hyperaemic flow response with an erroneously increased 
FFR and underestimation of disease severity. Any ventricularisa-
tion of the pressure waveform has to be recognised and avoided. 
Saline flushing before FFR measurement allows elimination of any 
residual contrast material inside the catheter. Both guiding cath-
eters with side holes and diagnostic catheters should be avoided 
for FFR measurements, since they do not provide a  reliable aor-
tic pressure waveform46, hyperaemic agents may not be delivered 

Figure 18. Physiology-imaging angiography coregistration: a step forward towards precision medicine. M1 to M6 and N1 to N6 are the side 
branches detected on angiography and OCT images, respectively. All side branches are automatically and accurately matched by the software 
(AngioPlus, version 3.0, Pulse Medical Imaging Technology), where M1 to M6 correspond to N1 to N6, respectively. OCT: optical coherence 
tomography; QFR: quantitative flow ratio
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intracoronarily, and smaller guides do not allow intervention should 
a complication occur.

Many pressure-measuring systems are available, of which 
a number are listed below:
	– 0.014” wires with a sensor (electric or fibre optic) at 3-3.5 cm 

from the distal radiopaque tip can currently be used as regu-
lar guide-wires for PCI intervention: PressureWire (St. Jude 
Medical); WaveWire (Philips); OptoWire (Opsens Medical); 
Comet Pressure Guidewire (Boston Scientific).

	– 0.020” microcatheters with a  pressure sensor (fibre optic) 
mounted on a  common guidewire: Navvus (Acist Medical 
Systems). Even thin microcatheters may impede maximal 
hyperaemic coronary flow, potentially underestimating FFR 
values, especially in the presence of mild disease. At the same 
time, these devices may offer advantages in cases of complex 
PCI such as bifurcation lesions (SB assessment)132.

See  Tips and tricks
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